1887
Volume 2013, Issue 1
  • EISSN: 2223-506X

Abstract

The frequent co-abuse of alcohol and tobacco may suggest that they share some common neurological mechanisms. For example, nicotine acts on Nicotinic acetylcholine receptors (nAChRs) in the brain to release dopamine to sustain addiction. Might nAChRs be entwined with alcohol? This review summarizes recent studies on the relationship between alcohol and nAChRs, including the role of nAChRs in molecular biological studies, genetic studies and pharmacological studies on alcohol, which indicate that nAChRs have been potently modulated by alcohol. We performed a cross-referenced literature search on biological, genetic and pharmacological studies of alcohol and nAChRs. Molecular biological and genetic studies indicated that nAChR (genes) may be important in mediating alcohol intake, but we still lack substantial evidence about how it works. Pharmacological studies proved the correlation between nAChRs and alcohol intake, and the association between nicotine and alcohol at the nAChRs. The positive findings of varenicline (a partial agonist at the α4β2 nAChR, smoking-cessation pharmaceutical) treatment for alcoholism, provides a new insight for treating co-abuse of these two substances. Molecular biological, genetic and pharmacological studies of alcohol at the nAChR level, provide a new sight for preventing and treating the co-abuse of alcohol and nicotine. Given the important role of nAChRs in nicotine dependence, the interaction between alcohol and nAChRs would provide a new insight in finding effective pharmacological treatments, in decreasing or stopping alcohol consumption and cigarette smoking concurrently.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.15
2013-06-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.15.html?itemId=/content/journals/10.5339/connect.2013.15&mimeType=html&fmt=ahah

References

  1. Dani JA, Harris RA. Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nat Neurosci. 2005 8:11:14651470
    [Google Scholar]
  2. Kalman D, Kim S, DiGirolamo G, Smelson D, Ziedonis D. Addressing tobacco use disorder in smokers in early remission from alcohol dependence: The case for integrating smoking cessation services in substance use disorder treatment programs. Clin Psychol Rev. 2010 30:1:1224
    [Google Scholar]
  3. Miller NS, Gold MS. Comorbid Cigarette and Alcohol Addiction. J Addict Dis. 1998 17:1:5566
    [Google Scholar]
  4. DiFranza JR, Guerrera MP. Alcoholism and smoking. J Stud Alcohol. 1990 51:2:130135
    [Google Scholar]
  5. Marks JL, Hill EM, Pomerleau CS, Mudd SA, Blow FC. Nicotine dependence and withdrawal in alcoholic and nonalcoholic ever-smokers. J Subst Abuse Treat. 1997 14:6:521527
    [Google Scholar]
  6. Pelucchi C, Gallus S, Garavello W, Bosetti C, La VC. Cancer risk associated with alcohol and tobacco use: focus on upper aero-digestive tract and liver. Alcohol Res Health. 2006 29:3:193198
    [Google Scholar]
  7. Hoffman JH, Welte JW, Barnes GM. Co-occurrence of alcohol and cigarette use among adolescents. Addict Behav. 2001 26:1:6378
    [Google Scholar]
  8. Ehringer MA, Clegg HV, Collins AC, Corley RP, Crowley T, Hewitt JK, Hopfer CJ, Krauter K, Lessem J, Rhee SH, Schlaepfer I, Smolen A, Stallings MC, Young SE, Zeiger JS. Association of the neuronal nicotinic receptor β2 subunit gene (CHRNB2) with subjective responses to alcohol and nicotine. Am J Med Genet Part B. 2007 144B:5:596604
    [Google Scholar]
  9. Schlaepfer IR, Hoft NR, Collins AC, Corley RP, Hewitt JK, Hopfer CJ, Lessem JM, McQueen MB, Rhee SH, Ehringer MA. The CHRNA5/A3/B4 Gene Cluster Variability as an Important Determinant of Early Alcohol and Tobacco Initiation in Young Adults. Biol Psychiatry. 2008a 63:11:10391046
    [Google Scholar]
  10. Feduccia AA, Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions. Front Mol Neurosci. 20125
    [Google Scholar]
  11. Buisson B, Bertrand D. Chronic exposure to nicotine upregulates the human (alpha)4(beta)2 nicotinic acetylcholine receptor function. J Neurosci. 2001 21:6:18191829
    [Google Scholar]
  12. Corringer PJ, Bertrand S, Bohler S, Edelstein SJ, Changeux JP, Bertrand D. Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. J Neurosci. 1998 18:2:648657
    [Google Scholar]
  13. Vallejo YF, Buisson B, Bertrand D, Green WN. Chronic nicotine exposure upregulates nicotinic receptors by a novel mechanism. J Neurosci. 2005 25:23:55635572
    [Google Scholar]
  14. Wüllner U, Gündisch D, Herzog H, Minnerop M, Joe A, Warnecke M, Jessen F, Schütz C, Reinhardt M, Eschner W, Klockgether T, Schmaljohann J. Smoking upregulates α4β2* nicotinic acetylcholine receptors in the human brain. Neurosci Lett. 2008 430:1:3437
    [Google Scholar]
  15. Corrigall WA, Coen KM, Adamson KL. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res. 1994 653:1–2:278284
    [Google Scholar]
  16. Pontieri FE, Tanda G, Orzi F, Chiara GD. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature. 1996 382:6588:255257
    [Google Scholar]
  17. Boyd RT. The Molecular Biology of Neuronal Nicotinic Acetylcholine Receptors. Crit Rev Toxicol. 1997 27:3:299318
    [Google Scholar]
  18. Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004 74:6:363396
    [Google Scholar]
  19. Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. Muscle and neuronal nicotinic acetylcholine receptors. FEBS J. 2007 274:15:37993845
    [Google Scholar]
  20. Nai Q, McIntosh JM, Margiotta JF. Relating neuronal nicotinic acetylcholine receptor subtypes defined by subunit composition and channel function. Mol Pharmacol. 2003 63:2:311324
    [Google Scholar]
  21. Charpantier E, Barneoud P, Moser P, Besnard F, Sgard F. Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport. 1998 9:13:30973101
    [Google Scholar]
  22. Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci. 1993 13:2:596604
    [Google Scholar]
  23. Azam L, Winzer-Serhan UH, Chen Y, Leslie FM. Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs within midbrain dopamine neurons. J Comp Neurol. 2002 444:3:260274
    [Google Scholar]
  24. Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J, Sands SB, Davis TI, Lebel LA, Fox CB, Shrikhande A, Heym JH, Schaeffer E, Rollema H, Lu Y, Mansbach RS, Chambers LK, Rovetti CC, Schulz DW, Tingley FD, O_Neill BT. Varenicline: An α4β2 Nicotinic Receptor Partial Agonist for Smoking Cessation. J Med Chem. 2005 48:10:34743477
    [Google Scholar]
  25. Davis JA, Gould TJ. β2 subunit-containing nicotinic receptors mediate the enhancing effect of nicotine on trace cued fear conditioning in C57BL/6 mice. Psychopharmacology. 2007 190:3:343352
    [Google Scholar]
  26. Larsson A, Engel JA. Neurochemical and behavioral studies on ethanol and nicotine interactions. Neurosci Biobehav Rev. 2004 27:8:713720
    [Google Scholar]
  27. Mudo G, Belluardo N, Fuxe K. Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms. J Neural Transm. 2007 114:1:135147
    [Google Scholar]
  28. Ochoa ELM, Lasalde-Dominicci J. Cognitive Deficits in Schizophrenia: Focus on Neuronal Nicotinic Acetylcholine Receptors and Smoking. Cell Mol Neurobiol. 2007 27:5:609639
    [Google Scholar]
  29. Portugal GS, Kenney JW, Gould TJ. β2 subunit containing acetylcholine receptors mediate nicotine withdrawal deficits in the acquisition of contextual fear conditioning. Neurobiol Learn Mem. 2008 89:2:106113
    [Google Scholar]
  30. Young JW, Finlayson K, Spratt C, Marston HM, Crawford N, Kelly JS, Sharkey J. Nicotine Improves Sustained Attention in Mice: Evidence for Involvement of the α7 Nicotinic Acetylcholine Receptor. Neuropsychopharmacology. 2004 29:5:891900
    [Google Scholar]
  31. Löf E, Olausson P, deBejczy A, Stomberg R, McIntosh JM, Taylor JR, Söderpalm B. Nicotinic acetylcholine receptors in the ventral tegmental area mediate the dopamine activating and reinforcing properties of ethanol cues. Psychopharmacology. 2007 195:3:333343
    [Google Scholar]
  32. Steensland P, Simms JA, Holgate J, Richards JK, Bartlett SE. Varenicline, an 4beta2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking. Proc Natl Acad Sci U S A. 2007 104:30:1251812523
    [Google Scholar]
  33. Young EM, Mahler S, Chi H, de Wit H. Mecamylamine and Ethanol Preference in Healthy Volunteers. Alcohol Clin Exp Res. 2005 29:1:5865
    [Google Scholar]
  34. Sajja RK, Rahman S. Neuronal nicotinic receptor ligands modulate chronic nicotine-induced ethanol consumption in C57BL/6J mice. Pharmacol Biochem Behav. 2012 102:1:3643
    [Google Scholar]
  35. Ritzenthaler JD, Roser-Page S, Guidot DM, Roman J. Nicotinic Acetylcholine Receptors are Sensors for Ethanol in Lung Fibroblasts. Alcohol Clin Exp Res. 2013
    [Google Scholar]
  36. Vengeliene V, Bilbao A, Molander A, Spanagel R. Neuropharmacology of alcohol addiction. Br J Pharmacol. 2008 154:2:299315
    [Google Scholar]
  37. Davis TJ, de Fiebre CM. Alcohol's actions on neuronal nicotinic acetylcholine receptors. Alcohol Res Health. 2006 29:3:179185
    [Google Scholar]
  38. Aistrup GL, Marszalec W, Narahashi T. Ethanol modulation of nicotinic acetylcholine receptor currents in cultured cortical neurons. Mol Pharmacol. 1999 55:1:3949
    [Google Scholar]
  39. Gorbounova O, Svensson A-L, Jönsson P, Mousavi M, Miao H, Hellström-Lindahl E, Nordberg A. Chronic Ethanol Treatment Decreases [3H]Epibatidine and [3H]Nicotine Binding and Differentially Regulates mRNA Levels of Nicotinic Acetylcholine Receptor Subunits Expressed in M10 and SH-SY5Y Neuroblastoma Cells. J Neurochem. 1998 70:3:11341142
    [Google Scholar]
  40. Borghese CM, Ali DN, Bleck V, Harris RA. Acetylcholine and Alcohol Sensitivity of Neuronal Nicotinic Acetylcholine Receptors: Mutations in Transmembrane Domains. Alcohol Clin Exp Res. 2002 26:12:17641772
    [Google Scholar]
  41. Zuo Y, Aistrup GL, Marszalec W, Gillespie A, Chavez-Noriega LE, Yeh JZ, Narahashi T. Dual action of n-alcohols on neuronal nicotinic acetylcholine receptors. Mol Pharmacol. 2001 60:4:700711
    [Google Scholar]
  42. Forman SA, Righi DL, Miller KW. Ethanol increases agonist affinity for nicotinic receptors from Torpedo. Biochim Biophys Acta. 1989 987:1:95103
    [Google Scholar]
  43. Nagata K, Aistrup GL, Huang CS, Marszalec W, Song JH, Yeh JZ, Narahashi T. Potent modulation of neuronal nicotinic acetylcholine receptor-channel by ethanol. Neurosci Lett. 1996 217:2–3:189193
    [Google Scholar]
  44. Cardoso RA, Brozowski SJ, Chavez-Noriega LE, Harpold M, Valenzuela CF, Harris RA. Effects of ethanol on recombinant human neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther. 1999 289:2:774780
    [Google Scholar]
  45. Owens JC, Balogh SA, McClure-Begley TD, Butt CM, Labarca C, Lester HA, Picciotto MR, Wehner JM, Collins AC. Alpha4beta2* Nicotinic Acetylcholine Receptors Modulate the Effects of Ethanol and Nicotine on the Acoustic Startle Response. Alcohol Clin Exp Res. 2003 27:12:18671875
    [Google Scholar]
  46. Butt CM, King NM, Stitzel JA, Collins AC. Interaction of the Nicotinic Cholinergic System with Ethanol Withdrawal. J Pharmacol Exp Ther. 2004 308:2:591599
    [Google Scholar]
  47. Hutchison KE, Rohsenow D, Monti P, Palfai T, Swift R. Prepulse Inhibition of the Startle Reflex: Preliminary Study of the Effects of a Low Dose of Alcohol in Humans. Alcohol Clin Exp Res. 1997 21:7:13121319
    [Google Scholar]
  48. Zuo Y, Yeh JZ, Narahashi T. Dual Action of n-Butanol on Neuronal Nicotinic alpha4beta2 Acetylcholine Receptors. J Pharmacol Exp Ther. 2003 304:3:11431152
    [Google Scholar]
  49. Zuo Y, Kuryatov A, Lindstrom JM, Yeh JZ, Narahashi T. Alcohol Modulation of Neuronal Nicotinic Acetylcholine Receptors Is alpha Subunit Dependent. Alcohol Clin Exp Res. 2002 26:6:779784
    [Google Scholar]
  50. Zuo Y, Nagata K, Yeh JZ, Narahashi T. Single-Channel Analyses of Ethanol Modulation of Neuronal Nicotinic Acetylcholine Receptors. Alcohol Clin Exp Res. 2004 28:5:688696
    [Google Scholar]
  51. Yu D, Zhang L, Eisele Jl, Bertrand D, Changeux JP, Weight FF. Ethanol inhibition of nicotinic acetylcholine type alpha 7 receptors involves the amino-terminal domain of the receptor. Mol Pharmacol. 1996 50:4:10101016
    [Google Scholar]
  52. Oz M, Jackson SN, Woods AS, Morales M, Zhang L. Additive Effects of Endogenous Cannabinoid Anandamide and Ethanol on 7-Nicotinic Acetylcholine Receptor-Mediated Responses in Xenopus Oocytes. J Pharmacol Exp Ther. 2005 313:3:12721280
    [Google Scholar]
  53. Covernton PJO, Connolly JG. Differential modulation of rat neuronal nicotinic receptor subtypes by acute application of ethanol. Br J Pharmacol. 1997 122:8:16611668
    [Google Scholar]
  54. Liu L, Hendrickson LM, Guildford MJ, Zhao-Shea R, Gardner PD, Tapper AR. Nicotinic Acetylcholine Receptors Containing the α4 Subunit Modulate Alcohol Reward. Biol Psychiatry. 2013 73:8:738746
    [Google Scholar]
  55. Santos N, Chatterjee S, Henry A, Holgate J, Bartlett SE. The α5 Neuronal Nicotinic Acetylcholine Receptor Subunit Plays an Important Role in the Sedative Effects of Ethanol But Does Not Modulate Consumption in Mice. Alcohol Clin Exp Res. 2013 37:4:655662
    [Google Scholar]
  56. Dawson A, Miles MF, Damaj MI. The β2 nicotinic acetylcholine receptor subunit differentially influences ethanol behavioral effects in the mouse. Alcohol. 2013 47:2:8594
    [Google Scholar]
  57. Borghese CM, Henderson LA, Bleck V, Trudell JR, Harris RA. Sites of excitatory and inhibitory actions of alcohols on neuronal alpha2beta4 nicotinic acetylcholine receptors. J Pharmacol Exp Ther. 2003 1:4252
    [Google Scholar]
  58. Liu Y, Dilger JP, Vidal AM. Effects of alcohols and volatile anesthetics on the activation of nicotinic acetylcholine receptor channels. Mol Pharmacol. 1994 45:6:12351241
    [Google Scholar]
  59. Wu G, Tonner PH, Miller KW. Ethanol stabilizes the open channel state of the Torpedo nicotinic acetylcholine receptor. Mol Pharmacol. 1994 45:1:102108
    [Google Scholar]
  60. Aracava Y, Fróes-Ferrão MM, Pereira EFR, Albuquerque EX. Sensitivity of N-Methyl-D-Aspartate (NMDA) and Nicotinic Acetylcholine Receptors to Ethanol and Pyrazole. Ann N Y Acad Sci. 1991 625:1:451472
    [Google Scholar]
  61. Forman SA, Zhou Q. Novel modulation of a nicotinic receptor channel mutant reveals that the open state is stabilized by ethanol. Mol Pharmacol. 1999 55:1:102108
    [Google Scholar]
  62. Forman SA, Zhou Q. Nicotinic Receptor Pore Mutations Create a Sensitive Inhibitory Site for Ethanol. Alcohol Clin Exp Res. 2000 24:9:13631368
    [Google Scholar]
  63. Zuo Y, Yeh JZ, Narahashi T. Octanol Modulation of Neuronal Nicotinic Acetylcholine Receptor Single Channels. Alcohol Clin Exp Res. 2004 28:11:16481656
    [Google Scholar]
  64. Dopico AM, Lovinger DM. Acute Alcohol Action and Desensitization of Ligand-Gated Ion Channels. Pharmacol Rev. 2009 61:1:98114
    [Google Scholar]
  65. Falk DE, Yi HY, Hiller-Sturmhofel S. An epidemiologic analysis of co-occurring alcohol and tobacco use and disorders: findings from the National Epidemiologic Survey on Alcohol and Related Conditions. Alcohol Res Health. 2006 29:3:162171
    [Google Scholar]
  66. Scherrer JF, Xian H, Lyons MJ, Goldberg J, Eisen SA, True WR, Tsuang M, Bucholz KK, Koenen KC. Posttraumatic stress disorder; combat exposure; and nicotine dependence, alcohol dependence, and major depression in male twins. Compr Psychiatry. 2008 49:3:297304
    [Google Scholar]
  67. Schlaepfer I, Hoft N, Ehringer M. The Genetic Components of Alcohol and Nicotine Co-Addiction: From Genes to Behavior. Curr Drug Abuse Rev. 2008b 1:2:124134
    [Google Scholar]
  68. True WR, Xian H, Scherrer JF, Madden PA, Bucholz KK, Heath AC, Eisen SA, Lyons MJ, Goldberg J, Tsuang M. Common Genetic Vulnerability for Nicotine and Alcohol Dependence in Men. Arch Gen Psychiatry. 1999 56:7:655661
    [Google Scholar]
  69. Wang JC, Grucza R, Cruchaga C, Hinrichs AL, Bertelsen S, Budde JP, Fox L, Goldstein E, Reyes O, Saccone N, Saccone S, Xuei X, Bucholz K, Kuperman S, Nurnberger J, Rice JP, Schuckit M, Tischfield J, Hesselbrock V, Porjesz B, Edenberg HJ, Bierut LJ, Goate AM. Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence. Mol Psychiatry. 2009 14:5:501510
    [Google Scholar]
  70. Butt CM, Hutton SR, Stitzel JA, Balogh SA, Owens JC, Collins AC. A Polymorphism in the alpha4 Nicotinic Receptor Gene (Chrna4) Modulates Enhancement of Nicotinic Receptor Function by Ethanol. Alcohol Clin Exp Res. 2003 27:5:733742
    [Google Scholar]
  71. File SE, Kenny PJ, Ouagazzal A-M. Bimodal modulation by nicotine of anxiety in the social interaction test: Role of the dorsal hippocampus. Behav Neurosci. 1998 112:6:14231429
    [Google Scholar]
  72. Stitzel JA, Dobelis P, Jimenez M, Collins AC. Long sleep and short sleep mice differ in nicotine-stimulated 86Rb+ efflux and alpha4 nicotinic receptor subunit cDNA sequence. Pharmacogenetics. 2001 11:4:331339
    [Google Scholar]
  73. Tritto T, Marley R, Bastidas D, Stitzel JA, Collins AC. Potential regulation of nicotine and ethanol actions by α4-containing nicotinic receptors. Alcohol. 2001 24:2:6978
    [Google Scholar]
  74. Chatterjee S, Steensland P, Simms JA, Holgate J, Coe JW, Hurst RS, Shaffer CL, Lowe J, Rollema H, Bartlett SE. Partial Agonists of the α3β4* Neuronal Nicotinic Acetylcholine Receptor Reduce Ethanol Consumption and Seeking in Rats. Neuropsychopharmacology. 2011 36:3:603615
    [Google Scholar]
  75. de Fiebre NC, de Fiebre CM. α7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not β-amyloid-induced neurotoxicity. Neurosci Lett. 2005 373:1:4247
    [Google Scholar]
  76. Bowers BJ, McClure-Begley TD, Keller JJ, Paylor R, Collins AC, Wehner JM. Deletion of the alpha7 Nicotinic Receptor Subunit Gene Results in Increased Sensitivity to Several Behavioral Effects Produced by Alcohol. Alcohol Clin Exp Res. 2005 29:3:295302
    [Google Scholar]
  77. Hopfer CJ, Stallings MC, Hewitt JK. Common genetic and environmental vulnerability for alcohol and tobacco use in a volunteer sample of older female twins. J Stud Alcohol. 2001 62:6:717723
    [Google Scholar]
  78. Young SE, Rhee SH, Stallings MC, Corley RP, Hewitt JK. Genetic and Environmental Vulnerabilities Underlying Adolescent Substance Use and Problem Use: General or Specific? Behav Genet. 2006 36:4:603615
    [Google Scholar]
  79. Mineur YS, Picciotto MR. Genetics of nicotinic acetylcholine receptors: Relevance to nicotine addiction. Biochem Pharmacol. 2008 75:1:323333
    [Google Scholar]
  80. Kim SA, Kim J-W, Song J-Y, Park S, Lee HJ, Chung J-H. Association of polymorphisms in nicotinic acetylcholine receptor α4 subunit gene (CHRNA4), μ-opioid receptor gene (OPRM1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients. Alcohol. 2004 34:2–3:115120
    [Google Scholar]
  81. Landgren S, Engel JA, Andersson ME, Gonzalez-Quintela A, Campos J, Nilsson S, Zetterberg H, Blennow K, Jerlhag E. Association of nAChR gene haplotypes with heavy alcohol use and body mass. Brain Res. 2009 1305::S72S79
    [Google Scholar]
  82. Kamens HM, Andersen J, Picciotto MR. Modulation of ethanol consumption by genetic and pharmacological manipulation of nicotinic acetylcholine receptors in mice. Psychopharmacology. 2010 208:4:613626
    [Google Scholar]
  83. Hendrickson LM, Zhao-Shea R, Pang X, Gardner PD, Tapper AR. Activation of alpha4* nAChRs is necessary and sufficient for varenicline-induced reduction of alcohol consumption. J Neurosci. 2010 30:30:1016910176
    [Google Scholar]
  84. Söderpalm B, Ericson M, Olausson P, Blomqvist O, Engel JA. Nicotinic mechanisms involved in the dopamine activating and reinforcing properties of ethanol. Behav Brain Res. 2000 113:1–2:8596
    [Google Scholar]
  85. Bobo JK. Nicotine Dependence and Alcoholism Epidemiology and Treatment. J Psychoactive Drugs. 1992 24:2:123129
    [Google Scholar]
  86. Chi H, de Wit H. Mecamylamine Attenuates the Subjective Stimulant-Like Effects of Alcohol in Social Drinkers. Alcohol Clin Exp Res. 2003 27:5:780786
    [Google Scholar]
  87. Rahman SA, Prendergast M. Cholinergic Receptor System as a Target for Treating Alcohol Abuse and Dependence. Recent Pat CNS Drug Discov. 2012 7:2:145150
    [Google Scholar]
  88. Dani JA, De BM. Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav. 2001 70:4:439446
    [Google Scholar]
  89. Jerlhag E, Grotli M, Luthman K, Svensson L, Engel JA. Role of the subunit composition of central nicotinic acetylcholine receptors for the stimulatory and dopamine-enhancing effects of ethanol. Alcohol Alcohol. 2006 41:5:486493
    [Google Scholar]
  90. Chan WK, Tsun-Hon Wong P, Sheu F-S. Frontal cortical α7 and α4β2 nicotinic acetylcholine receptors in working and reference memory. Neuropharmacology. 2007 52:8:16411649
    [Google Scholar]
  91. Gulick D, Gould TJ. Varenicline ameliorates ethanol-induced deficits in learning in C57BL/6 mice. Neurobiol Learn Mem. 2008 90:1:230236
    [Google Scholar]
  92. Nott A, Levin ED. Dorsal hippocampal α7 and α4β2 nicotinic receptors and memory. Brain Res. 2006 1081:1:7278
    [Google Scholar]
  93. Mifsud J-C, Hernandez L, Hoebel BG. Nicotine infused into the nucleus accumbens increases synaptic dopamine as measured by in vivo microdialysis. Brain Res. 1989 478:2:365367
    [Google Scholar]
  94. Clarke PBS, Kumar R. The effects of nicotine on locomotor activity in non-tolerant and tolerant rats. Br J Pharmacol. 1983 78:2:329337
    [Google Scholar]
  95. Blomqvist O, Engel JA, Nissbrandt H, Söderpalm B. The mesolimbic dopamine-activating properties of ethanol are antagonized by mecamylamine. Eur J Pharmacol. 1993 249:2:207213
    [Google Scholar]
  96. Blomqvist O, Ericson M, Johnson DH, Engel JA, Söderpalm B. Voluntary ethanol intake in the rat: effects of nicotinic acetylcholine receptor blockade or subchronic nicotine treatment. Eur J Pharmacol. 1996 314:3:257267
    [Google Scholar]
  97. Blomqvist O, Ericson M, Engel JA, Söderpalm B. Accumbal dopamine overflow after ethanol: Localization of the antagonizing effect of mecamylamine. Eur J Pharmacol. 1997 334:2–3:149156
    [Google Scholar]
  98. Ericson M, Blomqvist O, Engel JA, Söderpalm B. Voluntary ethanol intake in the rat and the associated accumbal dopamine overflow are blocked by ventral tegmental mecamylamine. Eur J Pharmacol. 1998 358:3:189196
    [Google Scholar]
  99. Le AD, Corrigall WA, Watchus J, Harding S, Juzytsch W, Li T-K. Involvement of Nicotinic Receptors in Alcohol Self-Administration. Alcohol Clin Exp Res. 2000 24:2:155163
    [Google Scholar]
  100. Nadal R, Chappell AM, Samson HH. Effects of Nicotine and Mecamylamine Microinjections into the Nucleus Accumbens on Ethanol and Sucrose Self-Administration. Alcohol Clin Exp Res. 1998 22:6:11901198
    [Google Scholar]
  101. Ericson M, Molander A, Löf E, Engel JA, Söderpalm B. Ethanol elevates accumbal dopamine levels via indirect activation of ventral tegmental nicotinic acetylcholine receptors. Eur J Pharmacol. 2003 467:1–3:8593
    [Google Scholar]
  102. Ford MM, Fretwell AM, Nickel JD, Mark GP, Strong MN, Yoneyama N, Finn DA. The influence of mecamylamine on ethanol and sucrose self-administration. Neuropharmacology. 2009 57:3:250258
    [Google Scholar]
  103. Hendrickson LM, Zhao-Shea R, Tapper AR. Modulation of ethanol drinking-in-the-dark by mecamylamine and nicotinic acetylcholine receptor agonists in C57BL/6J mice. Psychopharmacology. 2009 204:4:563572
    [Google Scholar]
  104. Kuzmin A, Jerlhag E, Liljequist S, Engel J. Effects of subunit selective nACh receptors on operant ethanol self-administration and relapse-like ethanol-drinking behavior. Psychopharmacology. 2009 203:1:99108
    [Google Scholar]
  105. Ericson M, Lof E, Stomberg R, Chau P, Soderpalm B. Nicotinic Acetylcholine Receptors in the Anterior, but Not Posterior, Ventral Tegmental Area Mediate Ethanol-Induced Elevation of Accumbal Dopamine Levels. J Pharmacol Exp Ther. 2008 326:1:7682
    [Google Scholar]
  106. Bhutada P, Mundhada Y, Ghodki Y, Dixit P, Umathe S, Jain K. Acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in mice: effects of exposure to stress and modulation by mecamylamine. J Psychopharmacol. 2012 26:2:315323
    [Google Scholar]
  107. Bito-Onon JJ, Simms JA, Chatterjee S, Holgate J, Bartlett SE. Varenicline, a partial agonist at neuronal nicotinic acetylcholine receptors, reduces nicotine-induced increases in 20% ethanol operant self-administration in Sprague-Dawley rats. Addict Biol. 2011 16:3:440449
    [Google Scholar]
  108. Farook JM, Lewis B, Gaddis JG, Littleton JM, Barron S. Effects of Mecamylamine on Alcohol Consumption and Preference in Male C57BL/6J Mice. Pharmacology. 2009 83:6:379384
    [Google Scholar]
  109. Bhutada PS, Mundhada YR, Bansod KU, Umathe SN, Kahale VP, Dixit PV, Mundhada DR. Inhibitory influence of mecamylamine on ethanol withdrawal-induced symptoms in C57BL/6J mice. Behav Pharmacol. 2010 21:2:9095
    [Google Scholar]
  110. Bhutada PS, Mundhada YR, Bansod KU, Dixit PV, Umathe SN, Mundhada DR. Inhibitory influence of mecamylamine on the development and the expression of ethanol-induced locomotor sensitization in mice. Pharmacol Biochem Behav. 2010 96:3:266273
    [Google Scholar]
  111. Larsson A, Svensson L, Söderpalm B, Engel JA. Role of different nicotinic acetylcholine receptors in mediating behavioral and neurochemical effects of ethanol in mice. Alcohol. 2002 28:3:157167
    [Google Scholar]
  112. Blomqvist O, Söderpalm B, Engel JA. Ethanol-induced locomotor activity: involvement of central nicotinic acetylcholine receptors? Brain Res Bull. 1992 29:2:173178
    [Google Scholar]
  113. Sotomayor-Zárate R, Gysling K, Busto UE, Cassels BK, Tampier L, Quintanilla ME. Varenicline and cytisine: two nicotinic acetylcholine receptor ligands reduce ethanol intake in University of Chile bibulous rats. Psychopharmacology. 2013 227:2:287298
    [Google Scholar]
  114. Nickell JR, Grinevich VP, Siripurapu KB, Smith AM, Dwoskin LP. Potential therapeutic uses of mecamylamine and its stereoisomers. Pharmacol Biochem Behav. 2013
    [Google Scholar]
  115. Rose JE, Behm FM, Westman EC, Levin ED, Stein RM, Ripka GV. Mecamylamine combined with nicotine skin patch facilitates smoking cessation beyond nicotine patch treatment alone. Clin Pharmacol Ther. 1994 56:1:8699
    [Google Scholar]
  116. Rose JE, Behm FM, Westman EC. Nicotine-mecamylamine treatment for smoking cessation: The role of pre-cessation therapy. Exp Clin Psychopharmacol. 1998 6:3:331343
    [Google Scholar]
  117. Blomqvist O, Hernandez-Avila CA, Van Kirk J, Rose JE, Kranzler HR. Mecamylamine Modifies the Pharmacokinetics and Reinforcing Effects of Alcohol. Alcohol Clin Exp Res. 2002 26:3:326331
    [Google Scholar]
  118. Childs E, Roche DJO, King AC, de Wit H. Varenicline Potentiates Alcohol-Induced Negative Subjective Responses and Offsets Impaired Eye Movements. Alcohol Clin Exp Res. 2012 36:5:906914
    [Google Scholar]
  119. Fucito LM, Toll BA, Wu R, Romano DM, Tek E, O'Malley SS. A preliminary investigation of varenicline for heavy drinking smokers. Psychopharmacology. 2011 215:4:655663
    [Google Scholar]
  120. McKee SA, Harrison ELR, O_Malley SS, Krishnan-Sarin S, Shi J, Tetrault JM, Picciotto MR, Petrakis IL, Estevez N, Balchunas E. Varenicline Reduces Alcohol Self-Administration in Heavy-Drinking Smokers. Biol Psychiatry. 2009 66:2:185190
    [Google Scholar]
  121. Mitchell JM, Teague CH, Kayser AS, Bartlett SE, Fields HL. Varenicline decreases alcohol consumption in heavy-drinking smokers. Psychopharmacology. 2012 223:3:299306
    [Google Scholar]
  122. Wouda JA, Riga D, Vries W, Stegeman M, Mourik Y, Schetters D, Schoffelmeer ANM, Pattij T, Vries TJ. Varenicline attenuates cue-induced relapse to alcohol, but not nicotine seeking, while reducing inhibitory response control. Psychopharmacology. 2011 216:2:267277
    [Google Scholar]
  123. Meszaros ZS, Abdul-Malak Y, Dimmock JA, Wang D, Ajagbe TO, Batki SL. Varenicline Treatment of Concurrent Alcohol and Nicotine Dependence in Schizophrenia. J Clin Psychopharmacol. 2013 33:2:243247
    [Google Scholar]
  124. Jorenby DE. Efficacy of Varenicline, an 4beta2 Nicotinic Acetylcholine Receptor Partial Agonist, vs Placebo or Sustained-Release Bupropion for Smoking Cessation: A Randomized Controlled Trial. JAMA. 2006 296:1:5663
    [Google Scholar]
  125. Kuehn BM. Updated US Smoking Cessation Guideline Advises Counseling, Combining Therapies. JAMA. 2008 299:23:2736
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2013.15
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error