Volume 2012, Issue 1

Abstract

Abstract

The petroglyph site in Jabal Jassasiyah Qatar is located approximately 60 km northeast of the capital city of Doha and has over 900 different types of petroglyphs. The most commonly found petroglyphs are cupules, which are almost always arranged in geometric patterns. A number of petroglyphs of boats are also found, usually seen from above, with a few seen in profile. As there is little evidence of what age to assign to these petroglyphs, samples of the calcium oxalate containing layers covering the petroglyphs were sent for radiocarbon dating to determine the minimum age they were created. The minimum ages of nine samples taken for analysis were found to be very short, the oldest minimum age being only 235 years BP (before present). No evidence was found for the petroglyphs dating back a few millennia as was previously postulated. Due to the lack of chronological data for Qatar’s archaeological past, the study data cannot completely rule out the petroglyphs dating back to ancient times.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2012.4
2012-04-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/connect/2012/1/connect.2012.4.html?itemId=/content/journals/10.5339/connect.2012.4&mimeType=html&fmt=ahah

References

  1. Beazley, M.J., Rickman, R.D., Ingram, D.K., Boutton, T.W., & Russ, J. (2002). Natural Abundances of Carbon Isotopes (14C,13C) in Lichens and Calcium Oxalate Pruina: Implications for Archaeological and Paleoenvironmental Studies. Radiocarbon, 44:, 675683.
    [Google Scholar]
  2. Bednarik, R.G. (2007). Rock Art Science: The Study of Palaeoart. Aryan Books International, New Delhi, India.
    [Google Scholar]
  3. Bednarik, R.G. (2008). Cupules. Rock Art Research, 25:, 61100.
    [Google Scholar]
  4. Campbell, J.B., Cole, N., Hatte, E., Tuniz, C., & Watchman, A.L. (1996). Dating of rock surface accretions with Aboriginal paintings and engravings in North Queensland. In Australian Archaeology ’95: Proceedings of the 1995. Australian Archaeological Association Annual Conference (Tempus 6). Eds. Ulm, S., Lilley, I. & Ross, A., University of Queensland, St. Lucia. 231239.
    [Google Scholar]
  5. Edwards, H.G.M., Drummond, L., & Russ, J. (1998). Fourier-transform Raman spectrometric study of pigments in native American Indian rock art: Seminole Canyon. Spectrochimica Acta, A54:, 18491856.
    [Google Scholar]
  6. Gillespie, F. (2009) Qatar Rock Carvings, QatarVisitor, http://www.qatarvisitor.com 7 pp.
  7. Gillespie, R. (1997). On human blood, rock art and calcium oxalate: further studies on organic carbon content and radiocarbon age of materials relating to Australian rock art. Antiquity, 71:, 430437.
    [Google Scholar]
  8. Glob, P.V. (1956). Rekognoscering pa Qatar (Reconnaissance in Qatar). Kuml, 199202.
    [Google Scholar]
  9. Glob, P.V. (1957). Oltidsfund i Qatar (Prehistoric discoveries in Qatar). Kuml, 16778.
    [Google Scholar]
  10. Hernanz, A., Gavira, J.M., Ruiz, J.F., & Edwards, H.G.M. (2008). A comprehensive micro-Raman spectroscopic study of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. Journal of Raman Spectroscopy, 39:, 972984.
    [Google Scholar]
  11. Hess, D., Coker, D.J., Loutsch, J.M., & Russ, J. (2007). Production of Oxalates In Vitro by Microbes Isolated from Rock Surfaces with Prehistoric Paints in the Lower Pecos Region, Texas.. Geoarchaeology, 23:, 311. Kapel, H. 1983. Rock carvings at Jabel Jusasiyah, Qatar, Arrayan 8:1–126 & appendix 1–53
    [Google Scholar]
  12. Krumbein, W.E., Brehm, U., Gerdes, G., Gorbushina, A.A., Levit, G., & Palinska, K. (2003). Biofilm, Biodictyon, and Biomat - Biolaminites, Oolites, Stromatolites - Geophysiology, Global mechanisms and Parahistol. Eds. Krumbein, W.E., Paterson, D.W. & Zavarzin, G.A., In Fossil and recent Biofilms. A natural History of Life on Earth, Kluwer Academic Press Publishers, Dordrecht. 128.
    [Google Scholar]
  13. Liu, T. (2003). Blind testing of rock varnish microstratigraphy as a chronometric indicator: results on late Quaternary lava flows in the Mojave Desert, California. Geomorphology, 53:, 209234.
    [Google Scholar]
  14. Liu, T., & Broecker, W.S. (1999). Rock varnish evidence for Holocene climate variations in the Great Basin of the western United States. Geological Society of America Abstracts, 31:, 418.
    [Google Scholar]
  15. Liu, T., & Broecker, W.S. (2000). How fast does rock varnish grow?. Geology, 28:, 183186.
    [Google Scholar]
  16. Liu, T., & Broecker, W.S. (2001). Rock varnish: recorder of desert wetness?. GSA Today, 11:, 410.
    [Google Scholar]
  17. Liu, T., & Broecker, W.S. (2007). Holocene rock varnish microstratigraphy and its chronometric application in the drylands of western USA. Geomorphology, 84:, 121.
    [Google Scholar]
  18. Liu, T., & Broecker, W.S. (2008). Rock varnish microlamination dating of late Quaternary features in the drylands of western USA. Geomorphology, 93:, 501523.
    [Google Scholar]
  19. Liu, T., & Broecker, W.S. (2008). Rock varnish evidence for latest Pleistocene millennial-scale wet events in the drylands of western United States. Geology, 36:, 403406.
    [Google Scholar]
  20. Liu, T., Broecker, W.S., Bell, J.W., & Mandeville, C.W. (2000). Terminal Pleistocene wet event recorded in rock varnish from the Las Vegas Valley, southern Nevada. Paleogeography, Paleoclimatology, Paleoecology, 161:, 423433.
    [Google Scholar]
  21. Liu, T., & Dorn, R.I. (1996). Understanding the spatial variability of environmental change in drylands with rock varnish microlaminations. Annals of the Association of American Geographers, 86:, 187212.
    [Google Scholar]
  22. Lytle, F., & Lytle, M. (2010) Final report: dating Black Canyon petroglyphs by XRF chemical analysis. U.S. Fish and Wildlife Services, Contract Number GS-10F-0183P, 42 pp.
  23. Lytle, F., Lytle, M., Rogers, A.K., Garfinkel, A.P., & Cole, C. (2008) An experimental technique for measuring age of petroglyph production: results on Coso petroglyphs. Paper presented at the 31 st Great Basin Anthropological Conference, Portland, OR.
  24. Maynard, L. (1977). Classification and terminology in Australian rock art. Form in Indigineous Rock Art. Ed. Ucho, P.J., Gerald Duckworth and Co., Ltd, London. 387402.
    [Google Scholar]
  25. Muhammed Abdul, Nayeem (1998). Qatar: Prehistory and Protohistory from the Most Ancient Times (Ca. 1,000,000 to End of B.C. Era). Hyberadad Publishers, Hyberadad, India. Printed at Techno Printing Press, Riyadh
    [Google Scholar]
  26. Rice, M. (1994). The Archaeology of the Arabian Gulf. Routledge, London.
    [Google Scholar]
  27. Querejuza, R. (2007). Dialogues 3: Cupules in rock art. La Pintura, 33:, 45.
    [Google Scholar]
  28. Rampazzi, L. (2004). Analytical investigation of calcium oxalate films on marble monuments. Talanta, 63:, 967977.
    [Google Scholar]
  29. Rogers, A.K. (2010). A chronology of six rock art motifs in the Cosa Range, eastern California. American Indian Rock Art, 36:, 2336.
    [Google Scholar]
  30. Rowe, M.W., & Steelman, K.L. (2003). Comment on some evidence of a date of first humans to arrive in Brazil. Journal of Archaeological Science, 30:, 13491351.
    [Google Scholar]
  31. Ruiz, J.F., Mas, M., Hernanz, A., Rowe, M.W., Steelman, K.L., & Gavira, J.M. (2006). First radiocarbon dating of oxalate crusts over Spanish Prehistoric Rock Art. International Newsletter on Rock Art, 46:, 15.
    [Google Scholar]
  32. Ruiz López, J.F., Rowe, M.W., Hernanz Gismero, A., Gavira Vallejo, J.M., Viãas Vallverdú, R., & Rubio i Mora, A. (2009) Cronología del arte rupestre postpaleolítico y datación absoluta de pátinas de oxalato cálcico. Primeras experiencias en Castilla – La Mancha (2004–2007). In El Arte Rupestre del Arco Mediterrneo de la Penísula Ibérica, pp. 280–294.
  33. Russ, J., Palma, R.L., Loyd, D.H., Farwell, D.W., & Edwards, H.G.M. (1995). Analysis of the rock accretions in the Lower Pecos region of southwest Texas. Geoarchaeology, 10:, 4363.
    [Google Scholar]
  34. Russ, J., Kaluarchi, W.D., Drummond, L., & Edwards, H.M.G. (1999). The nature of a whewellite-rich rock crust associated with pictographs in SW Texas. Studies in Conservation, 44:, 91103.
    [Google Scholar]
  35. Russ, J., Loyd, D.H., & Boutton, T.W. (2000). A paleoclimate reconstruction for southwestern Texas using oxalate residue from lichen as a paleoclimate indicator. Quaternary International, 67:, 2936.
    [Google Scholar]
  36. Steelman, K.L., Rickman, R., Rowe, M.W., Boutton, T.W., Russ, J., & Guidon, N. (2002). Accelerator mass spectrometry radiocarbon ages of an oxalate accretion and rock paintings at Toca do Serrote da Bastiana, Brazil. Archaeological Chemistry VI: Materials, Methods, and Meaning. Ed. Jakes, K. A., American Chemical Society, Washington, DC. pp. 22–35
    [Google Scholar]
  37. Watchman, A. (1990). A summary of occurrences of oxalate-rich crusts in Australia. Rock Art Research, 7:, 4450. Watchman, A. (1991). Age and composition of oxalate-rich crusts in the Northern Territory, Australia,Studies in Conservation 36: 24–32
    [Google Scholar]
  38. Watchman, A. (1993). Evidence of a 25,000-year-old pictograph in northern Australia. Geoarchaeology, 8:, 465473.
    [Google Scholar]
  39. Watchman, A., Taçon, P., Fullagar, R., & Head, L. (2000). Minimum ages for pecked rock markings from Jinmium, north western Australia. Archaeology of Oceania, 35:, 110.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2012.4
Loading
/content/journals/10.5339/connect.2012.4
Loading

Data & Media loading...

Most Cited Most Cited RSS feed