1887
Volume 2025, Issue 1
  • EISSN: 2708-0463

Abstract

كان الھدف من الدراسة الحالیة ھو الكشف عن تأثير الإجهاد التأكسدي المحدث ببيروكسيد الهيدروجين على الخصائص الدوائية المسكنة للألم، والخافضة للحرارة، والمضادة للالتهاب للنيميسولايد في أفراخ الدجاج. تضمنت التجاربُ الكشفَ عن الإجهاد التأكسدي، بالإضافة إلى تقدير تأثيره على بعض الخصائص الدوائية للنيميسوليد. فقد سَبَّبَ بيروكسيد الهيدروجين (0.5% في ماء الشرب) إحداث الإجهاد التأكسدي في الیوم السابع، واليوم العاشر، والرابع عشر من أعمار أفراخ الدجاج، من خلال الانخفاض المعنوي في تركیز مضادات الأكسدة في بلازما الدم للدجاج المجھد، مقارنةً مع مجموعة السيطرة (ماء الشرب العادي)، وبنسبة 46%، و58%، و22% على التوالي. عمل الإجهاد التأكسدي على زيادة تأثير النيميسولايد المُسَكِّن للألم في أفراخ الدجاج المجهَد، وبنسبة 31%، من خلال النقصان في قيمة الجرعة الفعالة الوسطية المسكنة للألم في أفراخ الدجاج المجهد، وسَبَّب الإجهاد التأكسدي الزيادة المعنوية في فعالية النيميسولايد المسكنة للألم عند إعطائه بِجُرَع متعددة (4.90، و9.79، و19.58 ملجم/كجم، في العضل)، وكانت نسبة تسكین الألم في دجاج مجموعة السيطرة هي 33%، و67%، و100%، وزادت النسبة لتصبح 50%، و83%، و100 % على التوالي في أفراخ الدجاج المجهد، وبصورة معتمدة على الجرعة. وازداد تأثير النيميسولايد (19.58 ملجم/كجم، في العضل) الخافض للحرارة بصورة معنوية في أفراخ الدجاج المجھد، مقارنة مع مجموعة السيطرة عن طريق خفضه للحرارة المحدثة بخميرة الخباز (135 ملجم/كجم، في الخلب) خلال الأوقات المختلفة، كما أدى الإجهاد التأكسدي المحدث ببيروكسيد الهيدروجين إلى تغيير من خاصية النيميسولايد المضادة للالتهاب، مقارنةً مع مجموعة السيطرة، والناتج عن تقليله من سُمْك باطن القدم المحدث بالفورمالين. تشير نتائج هذه الدراسة إلى أن الإجهاد التأكسدي المحدث ببيروكسيد الهيدروجين عمل على تحوير الخصائص الدوائية للنيميسولايد المسكِّنة للألم، والخافضة للحرارة، والمضادة للالتهاب في أفراخ الدجاج؛ مما يستدعي الانتباه له عند معالجة الحيوانات المجهدة.

The aim of the present study was to investigate the effect of hydrogen peroxide-induced oxidative stress on the analgesic, antipyretic and anti-inflammatory properties of nimesulide in chicks. Experiments included the detection of oxidative stress besides estimation of its impact on some pharmacological properties of nimesulide. It was found that hydrogen peroxide (0.5% in drinking water) induced oxidative stress in 7-day, 10-day, and 14-day-old chicks by significantly decreasing the concentration of antioxidants in the plasma of stressed chicks compared to the control group (which received normal drinking water) by 46%, 58%, and 22% respectively. Oxidative stress increased the nimesulide analgesia in stressed chicks by 31% by decreasing the analgesic median effective dose in stressed chicks. The oxidative stress also caused a significant increase in the analgesic efficacy of nimesulide when administered in multiple doses (4.90, 9.79, and 19.58 mg/kg, i.m.). The percentages of antinociception in the control group were 33%, 67% and 100%, which increased to 50%, 83%, and 100%, respectively, in stressed chicks, in a dose-dependent manner. The antipyretic effect of nimesulide (19.58 mg/kg, i.m.) increased significantly in stressed chicks compared to the control group, as indicated by a reduction in the temperature induced by baker's yeast (135 mg/kg, i.p.) at various times. Hydrogen peroxide-induced oxidative stress also changed the anti-inflammatory property of nimesulide compared to the control group, as evidenced by a reduction in the paw thickness induced by formalin. The results of this study indicate that hydrogen peroxide-induced oxidative stress altered the analgesic, antipyretic, and anti-inflammatory properties of nimesulide in chicks, highlighting the importance of considering this when treating stressed animals.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2025.3
2025-04-30
2025-05-20
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2025/1/AJSR.2025.issue1.3.html?itemId=/content/journals/10.5339/ajsr.2025.3&mimeType=html&fmt=ahah

References

  1. Cashman JN. The mechanisms of action of NSAIDs in analgesia. Drugs. 1996; 52:(Suppl 5):13–23. https://doi.org/10.2165/00003495-199600525-00004
    [Google Scholar]
  2. Yuan C-J, Mandal AK, Zhang Z, Mukherjee AB. Transcriptional regulation of cyclooxygenase-2 gene expression: Novel effects of nonsteroidal anti-inflammatory drugs. Cancer Research. 2000; 60:(4):1084–1091. https://pubmed.ncbi.nlm.nih.gov/10706128/
    [Google Scholar]
  3. Botting RM. Inhibitors of cyclooxygenases: Mechanisms, selectivity and uses. Journal of Physiology and Pharmacology. 2006; 57:(Suppl 5):113–124. https://pubmed.ncbi.nlm.nih.gov/17218763/
    [Google Scholar]
  4. Suleyman H, Cadirci E, Albayrak A, Halici Z. Nimesulide is a selective COX-2 inhibitory, atypical non-steroidal anti-inflammatory drug. Current Medicinal Chemistry. 2008; 15:(3):278–283. https://doi.org/10.2174/092986708783497247
    [Google Scholar]
  5. Caiazzo E, Ialenti A, Cicala C. The relatively selective cyclooxygenase-2 inhibitor nimesulide: What’s going on?. European Journal of Pharmacology. 2019;848:105–111. https://doi.org/10.1016/j.ejphar.2019.01.044
    [Google Scholar]
  6. Kress HG, Baltov A, Basiński A, Berghea F. Castellsague J, Codreanu C, et al.. Acute pain: A multifaceted challenge – the role of nimesulide. Current Medical Research and Opinion. 2016; 32:(1):23–36. https://doi.org/10.1185/03007995.2015.1100986
    [Google Scholar]
  7. Bernareggi A. Clinical pharmacokinetics of nimesulide. Clinical Pharmacokinetics. 1998; 35:(4):247–274. https://doi.org/10.2165/00003088-199835040-00001
    [Google Scholar]
  8. Bennett A, Tavares IA. COX-2 inhibitors compared and contrasted. Expert Opinion on Pharmacotherapy. 2001; 2:(11):1859–1876. https://doi.org/10.1517/14656566.2.11.1859
    [Google Scholar]
  9. Bianchi M, Ferrario P, Balzarini P, Broggini M. Plasma and synovial fluid concentrations of nimesulide and its main metabolite after a single or repeated oral administration in patients with knee osteoarthritis. Journal of International Medical Research. 2006; 34:(4):348–354. https://doi.org/10.1177/147323000603400402
    [Google Scholar]
  10. Rao GS, Malik JK, Siddaraju VB, Shankaramurthy N. Pharmacokinetics and bioavailability of nimesulide in goats. Journal of Veterinary Pharmacology and Therapeutics. 2007; 30:(2):157–162. https://doi.org/10.1111/j.1365-2885.2007.00838.x
    [Google Scholar]
  11. Rainsford KD. Current status of the therapeutic uses and actions of the preferential cyclo-oxygenase-2 NSAID, nimesulide. Inflammopharmacology. 2006; 14:(3–4):120–137. https://doi.org/10.1007/s10787-006-1505-9
    [Google Scholar]
  12. Binning A. Nimesulide in the treatment of postoperative pain: A double-blind, comparative study in patients undergoing arthroscopic knee surgery. The Clinical Journal of Pain. 2007; 23:(7):565–570. https://doi.org/10.1097/AJP.0b013e3180e00dff
    [Google Scholar]
  13. Liang M, Yang H, Fu J. Nimesulide inhibits IFN-gamma-induced programmed death-1-ligand 1 surface expression in breast cancer cells by COX-2 and PGE2 independent mechanisms. Cancer Lettters. 2009; 276:(1):47–52. https://doi.org/10.1016/j.canlet.2008.10.028
    [Google Scholar]
  14. Afzal M, Bhardwaj DP, Khan R, Kazmi I, Saleem S, Al-Abbasi FA, et al.. Antineoplastic influence of nimesulide in chemically induced hepatocellular carcinoma by inhibition of DNA synthesis. Inflammopharmacology. 2019; 27:(1):89–98. https://doi.org/10.1007/s10787-018-0481-1
    [Google Scholar]
  15. Rasheed S, Sánchez SS, Yousuf S, Honoré SM, Choudhary MI. Drug repurposing: In-vitro anti-glycation properties of 18 common drugs. PLoS One. 2018; 13:(1):e0190509. https://doi.org/10.1371/journal.pone.0190509
    [Google Scholar]
  16. Patockova J, Marhol P, Tůmová E, Krsiak M, Rokyta R, Stípek S, et al. Oxidative stress in the brain tissue of laboratory mice with acute post insulin hypoglycemia. Physiology Research. 2003; 52:(1):131–135. https://pubmed.ncbi.nlm.nih.gov/12625818/
    [Google Scholar]
  17. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clinical Chemistry. 2006; 52:(4):601–623. https://doi.org/10.1373/clinchem.2005.061408
    [Google Scholar]
  18. Lee KJ, Jeong HG. Protective effects of kahweol and cafestol against hydrogen peroxide–induced oxidative stress and DNA damage. Toxicology Letter. 2007; 173:(2):80–87. https://doi.org/10.1016/j.toxlet.2007.06.008
    [Google Scholar]
  19. Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chemical Research in Toxicology. 2008; 21:(1):172–188. https://doi.org/10.1021/tx700210j
    [Google Scholar]
  20. Limón-Pacheco J, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2009; 674:(1–2):137–147. https://doi.org/10.1016/j.mrgentox.2008.09.015‏
    [Google Scholar]
  21. Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: Implication in redox and detoxification. Clinica Chimica Acta. 2003; 333:(1):19–39. https://doi.org/10.1016/s0009-8981(03)00200-6
    [Google Scholar]
  22. Davies MJ. The oxidative environment and protein damage. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics. 2005; 1703:(2):93–109. https://doi.org/10.1016/j.bbapap.2004.08.007
    [Google Scholar]
  23. Mousa YJ. Analgesic, antipyretic and anti-inflammatory efficacy of ketorolac in the chicks. Indian Journal of Animal Sciences. 2019; 89:(10):1086-1090.
    [Google Scholar]
  24. Mohammad FK, Tawfeek FK, Hassan AA. Pentobarbital anesthesia in rats treated with hydrogen peroxide: Effect of vitamin E. Iraqi Journal of Veterinary Sciences. 1999; 12:(2):203–211.
    [Google Scholar]
  25. Ahmed LI. Neurobehavioral and biochemical studies of hydrogen peroxide induced oxidative stress in chicks (MSc Thesis, University of Dohok, Dohok, Iraq).
    [Google Scholar]
  26. Mousa YJ, Mohammad FK. Effects of hydrogen peroxide on diazepam and xylazine sedation in chicks. Interdisciplinary Toxicology. 2012; 5:(4):179–183. https://doi.org/10.2478/v10102-012-0030-5
    [Google Scholar]
  27. Mohammad FK. Laboratory guide in toxicology. 2nd ed. University of Missouri MO: Mizzo Media; 2010.
  28. Madhubalaji CK, Mudaliar SN, Chauhan VS. Evaluation of drying methods on nutritional constituents and antioxidant activities of Chlorella vulgaris cultivated in an outdoor open raceway pond. Journal of Applied Phycology. 2021; 33:(3):1419–1434. https://doi.org/10.1007/s10811-020-02355-2
    [Google Scholar]
  29. Quan HL, Li WH, Liang XM, Fu GM, Wan Y. Effect of pre-drying heat treatment on active substances and in vitro antioxidant capacity of sesame meal. Food and Fermentation Industries. 2021;13:133–139. https://doi.org/10.13995/j.cnki.11-1802/ts.026732
    [Google Scholar]
  30. Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. . Molecular Nutrition and Food Research. 2006; 50:(11):1030–1038. https://doi.org/10.1002/mnfr.200600067
    [Google Scholar]
  31. Dixon WJ. Efficient analysis of experimental observations. Annual Review of Pharmacology and Toxicology. 1980;20:441–462. https://doi.org/10.1146/annurev.pa.20.040180.002301
    [Google Scholar]
  32. Mousa YJ. Neuroacting drugs and its pharmacological response in relation to different stress status: A review. Journal of the Hellenic Veterinary Medical Society. 2021; 72:(3):3007–3014. https://doi.org/10.12681/jhvms.28481
    [Google Scholar]
  33. Mousa YJ, Al-Zubaidy MHI. Anesthetic efficacy of ketamine, ketamine-tramadol and ketamine-ketorolac in the chicks. Iranian Journal of Veterinary Research. 2019; 20:(1):33–38. https://doi.org/10.22099/IJVR.2019.5140
    [Google Scholar]
  34. Mousa YJ, Mahmood MB. Effect of meloxicam coadministration on the anaesthetic potency of thiopental sodium in a chick model. Veterinarska Stanica. 2022; 53:(2):155–163. https://doi.org/10.46419/vs.53.2.5
    [Google Scholar]
  35. Yahya TA, Mousa YJ. Molecular effects of nimesulide and aspirin on caspase-3, PPAR-á, and COX-2 gene expression in mice. Iraqi Journal of Veterinary Sciences. 2024; 38:(4):801–807. https://doi.org/10.33899/ijvs.2024.149230.3638
    [Google Scholar]
  36. Mousa YJ, Mahmood MB, Mohammad MS. Administration of ketamine with the central and peripheral analgesics for induction of balanced anesthesia in the chicks. IOP Conference Series: Earth and Environmental Science. 2019;388:012021. https://doi.org/10.1088/1755-1315/388/1/012021
    [Google Scholar]
  37. Mousa YJ. Effect of chlorpheniramine on acute dichlorvos poisoning in chicks. Iraqi Journal of Veterinary Sciences. 2009; 23:(2):35–43. https://doi.org/10.33899/ijvs.2009.5738
    [Google Scholar]
  38. Mousa YJ. Anaesthetic properties of ketamine in chicks stressed with hydrogen peroxide. Veterinarni Medicina. 2014; 59:(8):369–375. https://doi.org/10.17221/7656-VETMED
    [Google Scholar]
  39. Mousa Y. Etomidate anesthesia in chicks: Effect of xylazine. Journal of the Hellenic Veterinary Medical Society. 2020; 71:(4):2463–2470. https://doi.org/10.12681/jhvms.25921
    [Google Scholar]
  40. Abotsi WKM, Lamptey SB, Afrane S, Boakye-Gyasi E, Umoh RU, Woode E. An evaluation of the anti-inflammatory. antipyretic and analgesic effects of hydroethanol leaf extract of Albizia zygia in animal models. Pharmaceutical Biology. 2016; 55:(1):338–348. https://doi.org/10.1080/13880209.2016.1262434
    [Google Scholar]
  41. Collin X, Robert JM, Duflos M, Wielgosz G, Le Baut G, Bobin-Dubigeon C, et al.. Synthesis of N-pyridinyl (methyl)-1,2-dihydro-4-hydroxyl-2-oxoquinolone-3-carboxamides and analogues and their anti-inflammatory activity in mice and rats. Journal of Pharmacy and Pharmacology. 2001; 53::417–423. https://doi.org/10.1211/0022357011775505
    [Google Scholar]
  42. Sondhi SM. Dinodia M. Rani R. Shukla R. Raghubir R. Synthesis, anti-inflammatory and analgesic activities evaluation of some mono, bi and tricyclic pyrimidine derivatives. Bioorganic and Medicinal Chemistry. 2005; 13:(22):6158–6166. https://doi.org/10.1016/j.bmc.2005.06.063
    [Google Scholar]
  43. Katz MH. Bivariate statistics. In: Katz MH (ed.). Study design and statistical analysis. New York, USA: Cambridg University Press; 2006. p. 66–119.
    [Google Scholar]
  44. Crofford LJ. COX-1 and COX-2 tissue expression: Implications and predictions. The Journal of Rheumatology. 1997;49:15–19. https://pubmed.ncbi.nlm.nih.gov/9249646/
    [Google Scholar]
  45. Sugita R, Kuwabara H, Kubota K, Sugimoto K, Kiho T, Tengeiji A, et al.. Simultaneous inhibition of PGE2 and PGI2 signals is necessary to suppress hyperalgesia in rat inflammatory pain models. Mediators of Inflammation. 2016(1):9847840. https://doi.org/10.1155/2016/9847840
    [Google Scholar]
  46. Mousa YJ. Effect of nefopam in normal chickens and its relationship to hydrogen peroxide-induced oxidative stress. Iraqi Journal of Veterinary Sciences. 2021; 35: (Supplement I)::7–12. https://doi.org/10.33899/ijvs.2021.127013.1433
    [Google Scholar]
  47. Akaishi T, Nakazawa K, Sato K, Saito H, Ohno Y, Ito Y. Hydrogen peroxide modulates whole cell Ca2+ currents through L-type channels in cultured rat dentate granule cells. Neuroscience Letters. 2004; 356:(1):25–28. https://doi.org/10.1016/j.neulet.2003.11.012
    [Google Scholar]
  48. Chen Y, Kanju P, Fang Q, Lee SH, Parekh PK, Lee W, et al.. TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain. 2014; 155:(12):2662–2672. https://doi.org/10.1016/j.pain.2014.09.033
    [Google Scholar]
  49. Rowlinson SW, Kiefer JR, Prusakiewicz JJ, Pawlitz JL, Kozak KR, Kalgutkar AS, et al.. A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385. The Journal of Biological Chemistry. 2003; 278:(46):45763–45769. https://doi.org/10.1074/jbc.M305481200
    [Google Scholar]
  50. Alves DP, Duarte IDG. Involvement of ATP-sensitive K+ channels in the peripheral antinociceptive effect induced by dipyrone. European Journal of Pharmacology. 2002; 444:(1–2):47–52. https://doi.org/10.1016/s0014-2999(02)01412-7
    [Google Scholar]
/content/journals/10.5339/ajsr.2025.3
Loading
/content/journals/10.5339/ajsr.2025.3
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error