1887
Volume 2(2021) Number 1
  • EISSN: 2708-0463

Abstract

يُشكّل التلوّث البيئي الناتج من الأنشطة الصناعية والمنزلية والزراعية ضغطًا كبيرًا على الموارد المائية على مستوى العالم؛ ذلك أنّ للمياه المستعملة تأثيرًا مباشرًا في البيئة، إذ يتم تصريفها مباشرة في الطبيعة بعد إخضاعها للمعالجة وفق معايير محدّدة، فتحتوي بذلك على مجموعة كبيرة ومتنوعة من الكائنات الحية الدقيقة والمركبات العضوية وغير العضوية التي تسبب العديد من الأمراض والمخاطر. وفي هذا الإطار، جمع الباحثون عينات من مياه البحر ومن مياه الصرف الصحي المعالجة وغير المعالجة من أربعة بلدان في جنوب البحر الأبيض المتوسط، هي: مصر والمغرب والجزائر وتونس. خضعت هذه العيّنات لمجموعة من التحاليل الفيزيائية-الكيميائية والميكروبية، ثمّ تمّت مقارنة النتائج المتحصّل عليها بدراسة أُجريت في الفترة نفسها بدولة في شمال البحر الأبيض المتوسط، وهي إيطاليا. أظهرت الدراسات الفيزيائية-الكيميائية تلوثًا بارزًا لمياه الصرف ومياه البحر التي تم جمعها وتحليلها من البلدان العربية الأربعة وإيطاليا، حيث أثبتت وجود الملوثات: الأكسجين الكيميائي (COD) والطلب على الأكسجين البيولوجي (BOD) و(TOC)، والنترات (NO) وغيرها، وأيضًا بعض المعادن الثقيلة. من ناحية أخرى، سمحت تقنية (DGGE) بتقييم مباشر للتنوع البكتيري الموجود بهذه المياه المستعملة وكذلك مياه البحر، وقد أثبتت هذه التحاليل شدة التنوع البكتيري في هذه المياه.

The availability of water resources worldwide suffers from pollution pressures caused by many assets, such as industrial, domestic, and agricultural activities. Wastewater has a direct impact on the natural environment, as it is drained after some specific treatments, so it contains a large variety of microorganisms, organic, and inorganic compounds that cause many diseases and harms. In this context, the authors collected samples of seawater as well as treated and untreated wastewater from southern Mediterranean countries (Egypt, Morocco, Algeria, and Tunisia), then carried out some physico-chemical and microbiological analysis. After that, the obtained results were compared with some of the results found in the same period in a northern Mediterranean country (Italy). Physico-chemical studies showed significant pollution of wastewater and seawater collected and analyzed from the Arab countries and Italy in terms of the presence of pollutants (COD, BOD, TOC, NO ... etc.), and some heavy metals. On the other hand, DGGE technology allowed a direct evaluation of bacterial diversity in this wastewater as well as seawater. These tests have demonstrated the intensity of bacterial diversity in these water types.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2021.6
2021-06-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2021/1/ajsr.2021.6.html?itemId=/content/journals/10.5339/ajsr.2021.6&mimeType=html&fmt=ahah

References

  1. Cyprowski M, Szarapińska-Kwaszewska J, Dudkiewicz B, Krajewski JA, Szadkowska-Stańczyk I. Exposure assessment to harmful agents in workplaces in sewage plant workers. Medycyna Pracy. 2005;56(3):213–222.
  2. Cyprowski M, Stobnicka-Kupiec A, Ławniczek-Wałczyk A, Bakal-Kijek A, Gołofit-Szymczak M, Górny RL. Anaerobic bacteria in wastewater treatment plant. International Archives of Occupational and Environmental Health. 2018;91(5):571–579. https://doi.org/10.1007/s00420-018-1307-6.
  3. World Health Organization. A regional overview of wastewater management and reuse in the Eastern Mediterranean Region; 2005 (no. WHO-EM/CEH/139/E).
  4. Sreenivasulu G, Jayaraju N, Sundara Raja Reddy BC, Lakshmi Prasad T. Physico-chemical parameters of coastal water from Tupilipalem coast, southeast coast of India. Journal of Coastal Sciences. 2015;2(2):34–39.
  5. Lamine I, Alla AA, Bourouache M, Moukrim A. Monitoring of physicochemical and microbiological quality of Taghazout seawater (southwest of Morocco): Impact of the new tourist resort “Taghazout Bay”. Journal of Ecological Engineering. 2019;20(7):79–89. https://doi.org/10.12911/22998993/109873.
  6. Mehri I, Turki Y, Chérif H, Khessairi A, Hassen A, Gtari M. Influence of biological treatment and ultraviolet disinfection system on Pseudomonas spp. diversity in wastewater as assessed by denaturing gradient gel electrophoresis. CLEAN – Soil, Air, Water. 2014;42(5):578–585. https://doi.org/10.1002/clen.201200589.
  7. TUA. Legislative decree. no. 152 03/04/2001. Unified environmental code. [Decreto Legislativo. Norme in Materia Ambientale – Testo Unico dell'Ambiente]; 2006 [accessed 2018 May 17]. www.gazzettaufficiale.it/eli/gu/2006/04/14/88/so/96/sg/pdf.
  8. NM. Ministère de l’Environnement du Maroc “Normes marocaines, Bulletin officiel du Maroc”, no. 5062 du 30 ramadan, 1423. Rabat; 2002.
  9. JORA. Journal Officiel de la République Algérienne. Décret exécutif no. 06-141 du 20 Rabie El Aouel 1427 correspondant au 19 April 2006, section 1, article 3.
  10. NTPA-001. Normative act regarding the determination of limits of loading with pollutants of industrial and town wastewaters at evacuation in natural receptors; 2005.
  11. NT106 002. Tunisian standard NT106 002 defines the maximum authorized concentrations of the various pollutants in water before discharge into the receiving environment; 2018.
  12. Lemarchand K, Berthiaume F, Maynard C, Harel J, Payment P, Bayardelle P, et al. Optimization of microbial DNA extraction and purification from raw wastewater samples for downstream pathogen detection by microarrays. Journal of Microbiological Methods. 2005;63(2):115–126. https://doi.org/10.1016/j.mimet.2005.02.021.
  13. Hassen W. Biodegradation of pesticides used in agricultural soils. European University Edition 2020; ISBN: 978-613-9-53921-5 (in French).
  14. Sun S, Guo Z, Yang R, Sheng Z, Cao P. Analysis of microbial diversity in tomato paste wastewater through PCR-DGGE. Biotechnology and Bioprocess Engineering. 2013;18(1):111–118. https://doi.org/10.1007/s12257-012-0155-6.
  15. Hamaidi-Chergui F, Errahmani MB, Demiai A, Hamaidi MS. Monitoring of physico-chemical characteristics and performance evaluation of a wastewater treatment plant in Algeria. 3rd International conference – Water resources and wetlands. 8–10 September, 2014, Tulcea, Romania. Dambovita: Romanian Limnogeographical Association; 2016. pp. 251–255.
  16. Nasri E, Subirats J, Sànchez-Melsió A, Mansour HB, Borrego CM, Balcázar JL. Abundance of carbapenemase genes (blaKPC, blaNDM and blaOXA-48) in wastewater effluents from Tunisian hospitals. Environmental Pollution. 2017;229:371–374. https://doi.org/10.1016/j.envpol.2017.05.095.
  17. Khouja I, Sullivansealey K, M’hiri F, Ouzari HI, Saidi N. Spatial–temporal variation of treatment performance and bacterial community diversity in a hybrid constructed wetland. International Journal of Environmental Science and Technology. 2020;17(6):3217–3230. https://doi.org/10.1007/s13762-020-02648-6.
  18. Hamaidi-Chergui F, Errahmani MB. Water quality and physicochemical parameters of outgoing waters in a pharmaceutical plant. Applied Water Science. 2019;9(7):165. https://doi.org/10.1007/s13201-019-1046-1.
  19. Afsa S, Hamden K, Martin PAL, Mansour HB. Occurrence of 40 pharmaceutically active compounds in hospital and urban wastewaters and their contribution to Mahdia coastal seawater contamination. Environmental Science and Pollution Research. 2020;27(2):1941–1955. https://doi.org/10.1007/s11356-019-06866-5.
  20. Papaevangelou VA, Gikas GD, Tsihrintzis VA, Antonopoulou M, Konstantinou IK. Removal of endocrine disrupting chemicals in HSF and VF pilot-scale constructed wetlands. Chemical Engineering Journal. 2016;294:146–156. https://doi.org/10.1016/j.cej.2016.02.103.
  21. Reopanichkul P, Carter RW, Worachananant S, Crossland CJ. Wastewater discharge degrades coastal waters and reef communities in southern Thailand. Marine Environmental Research. 2010;69(5):287–296. https://doi.org/10.1016/j.marenvres.2009.11.011.
  22. Houda B, Dorra G, Chafai A, Emna A, Khaled M. Impact of a mixed “industrial and domestic” wastewater effluent on the southern coastal sediments of Sfax (Tunisia) in the Mediterranean Sea. International Journal of Environmental Research. 2011;5(3):691–704.
  23. Roberts RL. U.S. patent no. 9,517,947. Washington, DC: U.S. Patent and Trademark Office; 2016.
  24. Idrissi YA, Alemad A, Aboubaker S, Daifi H, Elkharrim K, Belghyti D. Caractérisation physico-chimique des eaux usées de la ville d’Azilal -Maroc- [Physico-chemical characterization of wastewater from Azilal city -Morocco-]. International Journal of Innovation and Applied Studies. 2015;11(3):556–566.
  25. World Health Organization. Nitrate and nitrite in drinking-water; 2011.
  26. Spellman FR. Handbook of water and wastewater treatment plant operations. Boca Raton, FL: CRC Press; 2013.
  27. Kocour Kroupová H, Valentová O, Svobodová Z, Šauer P, Máchová J. Toxic effects of nitrite on freshwater organisms: A review. Reviews in Aquaculture. 2018;10(3):525–542. https://doi.org/10.1111/raq.12184.
  28. Miteva VI, Brenchley JE. Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Applied and Environmental Microbiology. 2005;71(12):7806–7818. https://doi.org/10.1128/AEM.71.12.7806-7818.2005.
  29. Osman WHW, Abdullah SRS, Mohamad AB, Kadhum AA, Abd Rahman R. Simultaneous removal of AOX and COD from real recycled paper wastewater using GAC-SBBR. Journal of Environmental Management. 2013;121:80–86. https://doi.org/10.1016/j.jenvman.2013.02.005.
  30. Alalwan HA, Kadhom MA, Alminshid AH. Removal of heavy metals from wastewater using agricultural byproducts. Journal of Water Supply: Research and Technology – AQUA. 2020;69(2):99–112. https://doi.org/10.2166/aqua.2020.133.
  31. Tahrani L, Soufi L, Mehri I, Najjari A, Hassan A, Van Loco J, et al. Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters. Microbial Pathogenesis. 2015;89:54–61. https://doi.org/10.1016/j.micpath.2015.09.001.
  32. Simon M, Grossart HP, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology. 2002;28(2):175–211. https://doi.org/10.3354/ame028175.
  33. Padilla CC, Ganesh S, Gantt S, Huhman A, Parris DJ, Sarode N, et al. Standard filtration practices may significantly distort planktonic microbial diversity estimates. Frontiers in Microbiology. 2015;6:547. Y.
  34. Haller CM, Rölleke S, Vybiral D, Witte A, Velimirov B. Investigation of 0.2 μ;m filterable bacteria from the Western Mediterranean Sea using a molecular approach: Dominance of potential starvation forms. FEMS Microbiology Ecology. 2000;31(2):153–161. https://doi.org/10.1016/S01686496(99)00096-3.
  35. Cydzik-Kwiatkowska A, Zielińska M. Bacterial communities in full-scale wastewater treatment systems. World Journal of Microbiology and Biotechnology. 2016;32(4):66. https://doi.org/10.1007/s11274-016-2012-9.
  36. Ma J, Wang Z, Yang Y, Mei X, Wu Z. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing. Water Research. 2013;47(2):859–869. https://doi.org/10.1016/j.watres.2012.11.013.
  37. Zhang B, Xu X, Zhu L. Activated sludge bacterial communities of typical wastewater treatment plants: Distinct genera identification and metabolic potential differential analysis. AMB Express. 2018;8(1):184. https://doi.org/10.1186/s13568-018-0714-0.
  38. Obayashi Y, Suzuki S. High growth potential and activity of 0.2 μ;m filterable bacteria habitually present in coastal seawater. Biogeosciences Discussions. 2017;1–9. https://doi.org/10.5194/bg-2016-560.
  39. Looney WJ, Narita M, Mühlemann K. Stenotrophomonas maltophilia: An emerging opportunist human pathogen. The Lancet Infectious Diseases. 2009;9(5):312–323. https://doi.org/10.1016/S1473-3099(09)70083-0.
  40. Wenzler E, Kamboj K, Balada-Llasat JM. Severe sepsis secondary to persistent Lysinibacillus sphaericus, Lysinibacillus fusiformis and Paenibacillus amylolyticus bacteremia. International Journal of Infectious Diseases. 2015;35:93–95. https://doi.org/10.1016/j.ijid.2015.04.016.
  41. Farooq S, Farooq R, Nahvi N. Comamonas testosteroni: Is it still a rare human pathogen? Case Reports in Gastroenterology. 2017;11(1):42–47. https://doi.org/10.1159/000452197.
http://instance.metastore.ingenta.com/content/journals/10.5339/ajsr.2021.6
Loading
/content/journals/10.5339/ajsr.2021.6
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error