1887
Volume 1(2020) Number 1
  • EISSN: 2708-0463

Abstract

اﻟﻜﻤﺒﻴﻮﺗﺮ اﻟﻜﻤﻮﻣﻲ ﻫﻮ ﻛﻤﺒﻴﻮﺗﺮ ﻳﺤﺎﻛﻲ ﻣﻨﻈﻮﻣﺔ اﻟﺤﺴﺎﺑﺎت ﻓﻲ اﻟﻔﻴﺰﻳﺎء اﻟﻜﻤﻮﻣﻴﺔ، ﺑﺤﻴﺚ ﻳﺘﻢ إﻋﺎدة ﺑﻨﺎء دارات وﺑﻮاﺑﺎت اﻟﻜﻤﺒﻴﻮﺗﺮ اﻟﻜﻼﺳﻴﻜﻲ اﻋﺘﻤﺎدًا ﻋﻠﻰ ﻣﺴﺎﺋﻞ وﺧﻮارزﻣﻴﺎت اﻟﻔﻴﺰﻳﺎء اﻟﻜﻤﻮﻣﻴﺔ اﻟﻐﺮﻳﺒﺔ واﻟﻤﺪﻫﺸﺔ. اﻟﻜﻔﺎءة اﻟﻨﻈﺮﻳﺔ ﻟﻠﻔﻴﺰﻳﺎء اﻟﻜﻤﻮﻣﻴﺔ ﻓﻲ ﺣﻞ اﻟﻜﺜﻴﺮ ﻣﻦ اﻷﻟﻐﺎز اﻟﻔﻴﺰﻳﺎﺋﻴﺔ ﻓﻲ اﻟﻌﺼﺮ اﻟﺤﺪﻳﺚ، وﺗﻮﻗﻌﺎﺗﻬﺎ اﻟﻤﺒﻜﺮة ﻻﻛﺘﺸﺎف ﺧﻮارزﻣﻴﺔ ﻛﻤﻮﻣﻴﺔ ﺗﻔﻴﺪ ﻏﺮض اﻟﺘﻄﻮر اﻟﻜﺒﻴﺮ ﻓﻲ ﻋﺎﻟﻢ اﻟﻜﻤﺒﻴﻮﺗﺮ، ﻗﺎدﺗﺎ اﻟﻜﺜﻴﺮ ﻣﻦ اﻟﻌﻠﻤﺎء إﻟﻰ اﻟﻌﻤﻞ اﻟﺘﻄﺒﻴﻘﻲ ﻋﻠﻰ ﻧﻤﺎذج ﻣﺨﺒﺮﻳﺔ ﻟﻠﺒﻮاﺑﺎت اﻟﻤﻨﻄﻘﻴﺔ ﻛﻤﻮﻣﻴًﺎ ﺗﺘﺠﺎوز ﺗﻠﻚ اﻟﻤﺼﻤﻤﺔ اﻋﺘﻤﺎدًا ﻋﻠﻰ أﻧﺼﺎف اﻟﻨﻮاﻗﻞ واﻟﻔﻴﺰﻳﺎء اﻟﻜﻼﺳﻴﻜﻴﺔ، اﻟﺘﻲ ﺑﻘﻴﺖ ﺗﻌﻤﻞ ﺑﻜﻔﺎءة ﻋﺎﻟﻴﺔ ﻓﻲ اﻟﻜﻤﺒﻴﻮﺗﺮ اﻟﺘﻘﻠﻴﺪي ﺣﺘﻰ ﺑﻠﻮغ اﻟﺘﺮاﻧﺰﺳﺘﻮرات ﻓﻲ وﺣﺪة اﻟﻤﺴﺎﺣﺔ ﻓﻲ اﻟﺪارات اﻟﺮﻗﻤﻴﺔ اﻹﻟﻜﺘﺮوﻧﻴﺔ اﻟﻤﺴﺘﻮى اﻟﺬري، وﺗﻘﻊ، ﺑﺎﻟﻀﺮورة، ﻓﻲ ﻣﺠﺎل ﻋﻤﻞ اﻟﻔﻴﺰﻳﺎء اﻟﻜﻤﻮﻣﻴﺔ ﺑﺘﻔﻮق. ﻓﻲ ﻫﺬه اﻟﺪراﺳﺔ، ﻧﺘﺘﺒّﻊ أﺷﻬﺮ اﻟﺨﻮارزﻣﻴﺎت واﻟﺒﻮاﺑﺎت اﻟﻤﻨﻄﻘﻴﺔ اﻟﻜﻤﻮﻣﻴﺔ اﻟﺘﻲ ﻳﺘﻢ اﻟﻌﻤﻞ ﻋﻠﻰ ﺗﺼﻤﻴﻤﻬﺎ ﻧﻈﺮﻳًﺎ وﻣﺨﺒﺮﻳًﺎ، ﻣﺮورًا ﻋﻠﻰ اﻟﻤﻔﺎﻫﻴﻢ اﻷﺳﺎﺳﻴﺔ اﻟﻤﻌﺘﻤﺪة ﻟﺒﻨﺎء ﻫﺬه اﻟﻤﻨﻈﻮﻣﺔ ﻛﺎﻟﺘﺸﺎﺑﻚ واﻟﺘﺮاﺑﻂ اﻟﻜﻤﻮﻣﻲ، واﻟﺘﺪاﺧﻞ اﻟﻜﻤﻮﻣﻲ واﻟﻜﻴﻮﺑﺖ. وﻓﻲ ﺧﺎﺗﻤﺔ اﻟﺪراﺳﺔ، ﻧﻮﺻﻲ وﻧﺘﺮﻗﺐ اﻟﻌﻤﻞ ﻋﻠﻰ ﺗﺸﻜﻴﻞ ﻓﺮﻳﻖ ﻋﻤﻞ ﻋﻠﻤﻲ ﻋﺮﺑﻲ ﻳﺒﺤﺚ ﻋﻤﻴﻘًﺎ ﻓﻲ إﻣﻜﺎﻧﻴﺔ وﻟﻮج ﻫﺬه اﻟﻌﻠﻮم اﻟﻌﺼﺮﻳﺔ ﻣﻦ زاوﻳﺘﻴﻬﺎ اﻟﻨﻈﺮﻳﺔ واﻟﺘﻘﻨﻴﺔ

Quantum Computer is a computer that simulates the system of calculations, circuits and logical gates in the classic computer based on quantum physics. The theoretical quantum physics efficiency at solving many complicated physical problems in modern times and its early predictions of discovering quantum algorithm benefiting the development in the computer world, have led many scientists to work on the quantum logic gates theoretically and laboratory.

In this paper, we discussed designing quantum algorithms theoretically and experimentally in the laboratory. Moreover, we presented the quantum basic concepts and principles contributed to building this system such as quantum entanglement, interference and superposition.

In conclusion, it is strongly recommended, as expected, that Arab scientists and research centers in the Middle East will explore more in depth Quantum Computer Science, theoretically and technically, by forming many working groups in the near future.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2020.5
2020-02-28
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2020/1/ajsr.2020.5.html?itemId=/content/journals/10.5339/ajsr.2020.5&mimeType=html&fmt=ahah

References

  1. Resch S, Karpuzus UR. arXiv:1905.07240 Quantum Computing: An Overview Across The System Stack. Ithaca: Cornell University Press 2019.
    [Google Scholar]
  2. Arute F, Arya K, Babbush R, et al., Quantum Supremacy Using A Programmable Superconducting Processor. Nature Research Journal. 2019; 574:7779:505510.
    [Google Scholar]
  3. Gotarane MV, Gandhi SM. Quantum Computing: Future Computing. International Research Journal of Engineering and Technology. 2016; 3:2:14241427.
    [Google Scholar]
  4. Moore GE. More Components onto Integrated circuits. IEEE Explore. 1998; 86:1:8285.
    [Google Scholar]
  5. IEEE Spectrum, Special Report: 50 Years of Moore’s Law, 2015. Available from: http://bit.ly/2uuHkl4
  6. Grambling E, Horowitz M. 202 p. Quantum Computing: Progress and Prospects. Washington, DC: The National Academies Press 2018.
    [Google Scholar]
  7. Brassard G, et al. Quantum Computing. Proceedings of the National Academy of Sciences, USA. 1998; 95: 11032-11033.
  8. Lovett NB. 211 p. of Quantum Walks on Graph Structures to Quantum Computing. Leeds, UK: School of Physics & Astronomy, University of Leeds 2011.
    [Google Scholar]
  9. Li J, Kais S. Entanglement Classifier in Chemical Reactions. Science Advances. 2019; 5:8:17.
    [Google Scholar]
  10. Cattaneo G, Leporati A, Leporini R. Quantum Conservative Many-valued Computing. Fuzzy Sets and Systems. May 1; 159:9:10011030.
    [Google Scholar]
  11. Bullock S. Charles Babbage and the Emergence of Automated Reason. In: Husbands PHolland OWheeler M, eds. The Mechanical Mind in History. Cambridge, MA: The MIT Press 2008;:1939.
    [Google Scholar]
  12. Bowen JP. Alan Turing: The Founder of Computer Science. In 2013 British Society of the History of Mathematics conference, Gresham College, UK; 2013.
  13. Goldstine HH, Goldstine A. Electronic Numerical Integrator and Computer (ENIAC). In: Randell B, edThe Origins of Digital Computers. Berlin/ Heidelberg: Springer-Verlag 1982;:359373.
    [Google Scholar]
  14. IBM Corporation. 256 p. Language Environment Writing Interlanguage Communication Applications. New York: International Business Machines (IBM) Co. 2019.
    [Google Scholar]
  15. Feynman RP. Simulating Physics with Computers. International Journal of Theoretical Physics. 1982; 21:6-7:467488.
    [Google Scholar]
  16. Gabbay DM, et al., . Handbook of Philosophy of Physics “Part A”. Netherland: Elsevier 2007.
    [Google Scholar]
  17. هايزنبرغ، ف. المبادئ الفيزيائية للنظرية الكمومية. ترجمة محمد صبري عبد المطلب وانتصارات محمد حسن الشبكي. ط 2. دبي: كلمة للترجمة والنشر؛ 2011 . 178 ص.
  18. Livesey DL. 543 p.  Atomic and Nuclear Physics. London: The University of British Columbia, Blasidell Publishing Company 1966.
    [Google Scholar]
  19. Yarwood J. 627 p. Atomic and Nuclear Physics. Cambridge: The University of Tutorial Press Ltd 1973.
    [Google Scholar]
  20. Shor PW. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. Society for Industrial and Applied Mathematics Journal on Computing. 1509; 1997:26:51484.
    [Google Scholar]
  21. MacFarlane A. Chapter (4) Lectures on Ten British Mathematicians. London: Chapman and Hall 1916.
    [Google Scholar]
  22. Mano MM, Ciletti MD. 547 p. Digital Design with Introduction to the Verilog HDL. 5th Edition. Hoboken, NJ: Pearson Education Inc. 2013.
    [Google Scholar]
  23. Glaser A. 231 p. History of Binary and Other Non decimal Numeration. Washington, DC: Library of Congress 1981.
    [Google Scholar]
  24. Scheck F. 741 p. Quantum Physics. Berlin/ Heidelberg: Springer 2007.
    [Google Scholar]
  25. Nath J, et al., Application of Decision Diagram to Design Quantum Circuits. Journal of Global Research in Computer Science. 2012; 3:3:58.
    [Google Scholar]
  26. Muthukrishnan A. Classical and Quantum Logic Gates: An Introduction to Quantum Computing. Quantum Information Seminar. Rochester Center for Quantum Information (RCQI); 1999. 22 p.
  27. Levitt MH. 686 p. Spin Dynamics Basics of Nuclear Magnetic Resonance. 1st edition. New York: Jon Wiley and Sons 2001.
    [Google Scholar]
  28. Deutsch D. Quantum Computational Networks. Mathematical and Physical Sciences. 1989; 425:1868:7390.
    [Google Scholar]
  29. Deutsch D. Quantum Theory, the Church-Turing Principle and the universal Quantum Computer. Proceeding of the Royal Society of London. A Mathimatical and Physics Science. 1985; 400:1818:97117.
    [Google Scholar]
  30. Benjamin P, et al., Simplifying Quantum Logic Using Higher-dimensional Hilbert Spaces. Nature Physics. 2009; 5::134140.
    [Google Scholar]
  31. Aruna AG, et al., A Study on Reversible Logic Gates of Quantum Computing. International Journal of Computer Science and Information Technologies. 2016; 7:1:427432.
    [Google Scholar]
  32. Grover LK. Quantum Computers can Search Arbitrarily Large Databases by Single Query. Physical Review Letters. 1997; 79:23:47094712.
    [Google Scholar]
  33. Ekert A, et al., 46 p. Basic Concepts in Quantum Computation. Oxford, UK: Centre for Quantum Computation, University of Oxford 2008.
    [Google Scholar]
  34. Monroe D, et al., Demonstration of Fundamental Quantum Logic Gate. Physical Review Letters. 1995; 75:25:47144717.
    [Google Scholar]
  35. Suratgar AA, et al., Design of a Qubit and a Decoder in Quantum Computing Based on a Spin Field Effect. Journal of Applied Research and Technology. 2012; 10:2:152160.
    [Google Scholar]
  36. Jones JA, Hansen RH, Mosca M. Quantum Logic Gates and Nuclear Magnetic Resonance Pulse Sequences. Journal of Magnetic Resonance. 1998; 135:2:353360.
    [Google Scholar]
  37. Anwar MS, Blazina D, Carteret HA, et al., Implementing Grover's Quantum Search on A Para-hydrogen Based Pure State NMR Quantum Computer. Chemical Physics Letters. 2004; 400:1-3:9497.
    [Google Scholar]
  38. Lamata L, Mezzacapo A, Casanova J, et al., Efficient Quantum Simulation of Fermionic and Bosonic Models in Trapped Ions. EPJ Quantum Technology. 2014; 1:9:13 p.
    [Google Scholar]
  39. Preskill J. Quantum Computing in the NISQ era and Beyond. Quantum. 2018; 2::7999.
    [Google Scholar]
  40. Martin-Lopez E, et al., Experimental Realization of Shor's Quantum Factoring Algorithm Using Qubit Recycling. Nature Photonics. 2012; 6:11:773776.
    [Google Scholar]
  41. Miceli R, McGuigan M. Quantum Computation and Visualization of Hamiltonians Using Discrete Quantum Mechanics and IBM QISKit. New York Scientific Data Summit (NYSDS). IEEE Conference. New York, USA; 2018.
  42. Macridin A, Spentzouris P, Amundson J, et al., Electron-Phonon Systems on a Universal Quantum Computer. Physical Review Letters. 2018; 121:11-14:110504.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ajsr.2020.5
Loading
/content/journals/10.5339/ajsr.2020.5
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error