
OPEN ACCESS Research article

Uniform stabilization of the
telegraph equation with a support
by fuzzy transform method
Rajib Ghosh1,*, Sanchita Chowdhury2, Ganesh Chandra Gorain1, Samarjit Kar3

ABSTRACT

We consider the vibrations of electrical waves or telecommunication signals. The uniform stabilization

of such vibrations is directly established with an explicit form of exponential energy decay estimate.

Using the fuzzy transform method, a closed form numerical scheme is constructed to support the

stability result.
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1. INTRODUCTION AND MATHEMATICAL FORMULATION

The telegraph equation arises from the propagation of electrical signals along a telegraph line. In 1850,

the mathematical theory on this equation was first explored by Lord Kelvin, based on the idea of the

signal decaying in underwater telegraph cables. At that time, William Thomson investigated the same

with the help of Fourier’s equation for heat conduction in a wire. On the other hand, Hodgkin and

Huxley1 applied this idea of signal transmission to different parts of neurons within neuron cell

membranes.

In this study, we consider the vibrations of a clamped elastic string, mathematically governed by the

standard telegraph equation

uxxðx; tÞ ¼ autt ðx; tÞ þ but ðx; tÞ þ cuðx; tÞ; 0 , x , L; t . 0; ð1Þ

where the coefficients a,b,c are all constants.

The stabilization of the vibrations of a flexible structure is a problem in a dynamical system governed

by partial differential equations. The most common class of vibrational stability is of the passive type,

which uses a resistive device to absorb vibration energy. Though the vibrations of flexible structures

are nonlinear in practice, linearized models are treated for analytical approach, simplicity and for

concise results. The problem of energy decay estimates, in the context of wave equation, were studied

by several authors (cf. Chen,2,3 Gorain,4,5 Komornik,6 Shahruz,7 Nandi et al.8 and a list of references

therein).

The boundary conditions are

uð0; tÞ ¼ 0 and uðL; tÞ ¼ 0; t $ 0 ð2Þ

Initially, this string is set to vibrate with

uðx;0Þ ¼ f ðxÞ and ut ðx;0Þ ¼ gðxÞ; 0 # x # L: ð3Þ

The function f(x) and g(x) are assumed to be continuous upto second order partial derivatives over

[0,L ], so that the solution u(x,t) is continuously differentiable over ð0; LÞ £ ð0;1Þ.

The aim of the present paper is to study the result of uniform stability for the solution of the

mathematical problem (1), subject to the boundary and initial conditions (2)–(3), by the means of an

explicit form of exponential energy decay estimate. To get this result, we use a direct method of

constructing a suitable Lyapunov function related to the energy functional of the system (1)–(3).

This exponential result had been directly obtained by Gorain9 for an inhomogeneous beam,

Lagnese10 for a wave equation in Rn and by Nandi et al.11 for the vibrations of a solar panel.

The study of dynamical systems modeled by differential equations is sometimes incomplete or

vague. Functional relationships connecting different parameters of a system truly characterise the

whole set of the system behavior, to be compatible with our limited knowledge of the system. This idea

leads to the Fuzzy Input Fuzzy Output (FIFO) system. In this paper, we would like to introduce and apply

the technique of ‘fuzzy transform’ following the idea of Stepnicka12 and Perfilieva et al.,13 to the

mathematical system (1)–(3) This technique is based on two transforms. One is direct fuzzy transform

or, F-transform and other is inverse F-transform. Practically, numerical computation based on these

transforms has gained importance due to its wide application to differential equations, especially on

partial differential equations. On application of this method, a partial differential equation reduces to a

set of algebraic equations. The treatment of these algebraic equations make it easier to obtain a

numerical solution of the corresponding partial differential equation. There are many other numerical

methods to handle such equations, but practically, this method is very helpful to verify the analytical

result obtained through numerical computations. Another main interest of this work is to obtain an

approximate closed-form numerical solution of the above system (1)–(3), by using the fuzzy transform

method and then plotting the solution graphically for different values of the parameters, we can directly

verify the analytical result of uniform stability.

2. ENERGY OF THE SYSTEM

We define the energy EðuðtÞÞ of the system (1)–(3) at any instant t, by

EðuðtÞÞ ¼
1

2

ðL
0

au2t þ u2x þ cu2
� �

dx for all t $ 0: ð4Þ
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Now, differentiating (4) with respect to t, we have

dE

dt
¼

ðL
0

aututt þ uxuxt þ cuut½ �dx: ð5Þ

Using (1) in (5) and applying the boundary conditions in (2), we get

dE

dt
¼ 2b

ðL
0

u2t dx # 0 for all t $ 0: ð6Þ

It follows from (6) that the system (1)–(3) is energy dissipating. Integrating (6) with respect to t over

[0,t ], the solution uðx; tÞ satisfies the energy estimate

EðuðtÞÞ2 Eðuð0ÞÞ ¼

ðL
0

ðt
0

u2tdxdt for all t $ 0; ð7Þ

where

Eðuð0ÞÞ ¼
1

2

ðL
0

aðgÞ2 þ ðf xÞ
2 þ cf 2

� �
dx: ð8Þ

In view of (7) and (8), we may conclude that if f [ H1
0ð0; LÞ and g [ L 2ð0; LÞ, where,

H1
0ð0; LÞ ¼ f : f [ H 1ð0; LÞ;fð0Þ ¼ fðLÞ ¼ 0f g

is the subspace of the classical Sobolev space

H 1ð0; LÞ ¼ f : f [ L2ð0; LÞ;fx [ L2ð0; LÞf g

of a real valued function of the order one, then

EðuðtÞÞ # Eðuð0ÞÞ , 1 for t $ 0: ð9Þ

3. UNIFORM STABILITY RESULT BY A DIRECT METHOD

Since the system (1)–(3) is not conserving and energy dissipating, it is natural to ask whether the

solution of the system decays with time uniformly? For an affirmative answer to this question, we use a

method that enables us to explicitly establish the uniform exponential energy decay estimate for the

system.

Theorem: If uðx; tÞ be the solution of the system (1)– (3), with ðf ; gÞ [ H1
0ð0; LÞ £ L2ð0; LÞ, then the

solution uðx; tÞ! 0 exponentially as time t !þ1, means, the energy functional E given by (4)

satisfies

EðuðtÞÞ # Ae2gtEðuð0ÞÞ; for t $ 0; ð10Þ

for some reals g . 0 and A . 1: The constants g and A depend on the interval [0,L] and eventually on

the initial values {f,g}.

Proof: See the Appendix.

This result shows the uniform exponential stability of the system (1)-(3) by means of an exponential

energy decay estimate. Hence, the solution of the system uðx; tÞ! 0 uniformly and exponentially as

time t !þ1 for every ðf ; gÞ [ H1
0ð0; LÞ £ L2ð0; LÞ:

We shall now verify the above result by a closed form numerical scheme using fuzzy transform or

F-transform technique. To study the scheme, the basic ideas of F-transform is discussed briefly in the

following.

4. F-TRANSFORMS FOR FUNCTIONS

This section recalls the method published by Perfilieva and Chaldeeva13 and Stepnicka.12 This

technique is more numerical than linguistic, which is why it belongs to the area called numerical
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methods on the basis of fuzzy application models. An interval [a,b ] of real numbers has been

used as a common domain of all functions. Zadeh14 introduced the concept of fuzzy sets via

membership function as a mathematical means of describing vagueness in linguistics. In last two

decades, many theoretical as well as numerical developments in fuzzy logic took place among the

researchers of mathematical communities.

Let xi ¼ aþ bði 2 1Þ; i ¼ 1; 2; . . . n be nodes on [a,b ], where, h ¼ ðb2 aÞ=ðn2 1Þ; n . 2. We

say that functions A1ðxÞ; . . . ; AnðxÞ defined on [a,b ] are basic functions, if each of them fulfills the

following conditions:

(i) Ai : ½a; b�! ½0; 1�; AiðxiÞ ¼ 1,

(ii) AiðxÞ ¼ 0 if x � ðxi21; xiþ1Þ, where, x0 ¼ a; xnþ1 ¼ b,

(iii) AiðxÞ is continuous,

(iv) AiðxÞ strictly increases on ½xi21; xi� and strictly decreases on ½xi; xiþ1�,

(v)
Pn

i¼1AiðxÞ ¼ 1 for all x [ ½a; b�,

(vi) Aiðxi 2 xÞ ¼ Aiðxi þ xÞ, for all x [ ½0; h�; i ¼ 2; . . . n2 1; n . 2,

(vii) Aiþ1ðxÞ ¼ Aiðx 2 hÞ, for all x [ ½aþ h; b�; i ¼ 2; . . . n2 2; n . 2.

In this case, we say that basic functions A1ðxÞ; . . . ; AnðxÞ determine a uniform fuzzy partition of

interval [a,b ]. In other words, basic functions are the fuzzy sets determining a uniform

fuzzy partition of real interval [a,b ]. We have already mentioned that the technique of fuzzy

transform is based on two transforms: one is the direct F transform and the other is the inverse

F transform.

Let f(x) be a continuous function on [a,b ], determining a uniform fuzzy partition of [a,b ]. If we set

F i ¼

Ð b
a
f ðxÞAiðxÞdxÐ b
a
AiðxÞdx

; i ¼ 1; 2; . . . ; n: ð11Þ

Then the n-tuple of real number ½F 1; F 2; . . . ; F n� is called the direct F-transform of f with respect

to the basic functions A1ðxÞ; A2ðxÞ; . . . ; AnðxÞ. Each F i is called a component of F-transform and the

totality can be viewed as an aggregate representation of the function f. On the other hand, if

F n½f � ¼ ½F 1; . . . ; F n� be the F-transform of f with respect to basic function A1; . . . ; An, then the

function

f FnðxÞ ¼
Xn
i¼1

AiðxÞF i ð12Þ

is called the inverse F-transform.

5. CLOSED FORM NUMERICAL SCHEME

In this section, we study the application of F-transform in solving the above system of equations

(1)–(3), that means, we wish to discuss the numerical method based on F-transform to the following

initial-boundary value problem

uxx ¼ autt þ but þ cu; 0 , x , L;0 , t , T

uðx;0Þ ¼ f ðxÞ; ut ðx;0Þ ¼ gðxÞ; 0 # x # L

uð0; tÞ ¼ 0; uðL; tÞ ¼ 0; t $ 0:

8>>>>>>><
>>>>>>>:

ð13Þ

On application of F-transform, the first equation of (13) is transformed into the following algebraic

equation

F 2½uxx� ¼ aF 2½utt � þ bF 2½ut � þ c½u�; ð14Þ
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where, F 2½utt �, F
2½uxx�, F

2½ut � are the matrices of the F-transform components of utt , uxx , ut given by

F 2½utt � ¼

u11tt u12tt · · · u1mtt

u21tt u22tt · · · u2mtt

· · · · · · · · · · · ·

· · · · · · · · · · · ·

un1tt un2tt · · · unmtt

2
666666664

3
777777775
;

F 2½uxx� ¼

u11xx u12xx · · · u1mxx

u21xx u22xx · · · u2mxx

· · · · · · · · · · · ·

· · · · · · · · · · · ·

un1xx un2xx · · · unmxx

2
666666664

3
777777775

and

F 2½ut � ¼

u11t u12t · · · u1mt

u21t u22t · · · u2mt

· · · · · · · · · · · ·

· · · · · · · · · · · ·

un1t un2t · · · unmt

2
666666664

3
777777775
:

To determine the matrices F 2½utt �; F
2½uxx� and F 2½ut �, we replace the partial derivatives in (14) by

approximation as

utt <
uðx; t þ kÞ2 2uðx; tÞ þ uðx; t 2 kÞ

k 2
;

uxx <
uðx þ h; tÞ2 2uðx; tÞ þ uðx 2 h; tÞ

h2
;

ut <
uðx; t þ kÞ2 uðx; tÞ

k
:

Next, we can approximate uijtt as follows:

uijtt ¼

Ð Ð
›2u
›t 2

ðx; tÞA iðxÞBjðtÞdxdtÐ Ð
A iðxÞBjðtÞdxdt

<

Ð Ð
uðx;tþkÞ22uðx;tÞþuðx;t2kÞ

k 2

h i
A iðxÞB jðtÞdxdtÐ Ð

A iðxÞB jðtÞdxdt

¼
1

k 2

Ð Ð
uðx; t þ kÞA iðxÞB jðtÞdxdtÐ Ð

A iðxÞB jðtÞdxdt
2

2

k 2

Ð Ð
uðx; tÞA iðxÞBjðtÞdxdtÐ Ð

A iðxÞB jðtÞdxdt

þ
1

k 2

Ð Ð
uðx; t 2 kÞA iðxÞBjðtÞdxdtÐ Ð

A iðxÞB jðtÞdxdt

¼
1

k 2
½u i;jþ1 2 2u ij þ u i;j21�: ð15Þ
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Similarly,

uijxx ¼
1

h2
½u iþ1;j 2 2u ij þ u i21;j� ð16Þ

uijt ¼
1

k
u i;jþ1 2 u ij
� �

: ð17Þ

Using the relations (15), (16) and (17), we obtain to the following recursive equation

a

k 2
u i;jþ1 2 2u ij þ u i;j21
� �

2
1

h2
u iþ1;j 2 2u ij þ u i21;j
� �

þ
b

k
u i;jþ1 2 u ij
� �

þ cu ij ¼ 0

or,

u i;jþ1 ¼ A u iþ1;j þ u i21;j
� �

þ Bu ij 2 Cu i;j21; ð18Þ

for i ¼ 1; 2; . . . ;m2 1, j ¼ 0; 1; 2; . . . ; n2 1, where

A ¼
k 2

h2ðaþ bkÞ
; B ¼

h2ð2aþ bkÞ2 k 2ð2þ ch2Þ

h2ðaþ bkÞ
; C ¼

a

ðaþ bkÞ
:

To solve the above recursive relation (18), we first put j ¼ 0 in (18). Then we obtain

u i1 ¼ A½u iþ1;0 þ u i21;0� þ Bui0 2 Cu i;21; i ¼ 1; 2; . . .m2 1: ð19Þ

The unknown u i;21 for i ¼ 0; 1; . . . ;m occurring in recursive equation (19) can be obtained from the

second initial condition ut ðx; 0Þ ¼ gðxÞ in (13), which leads to the following difference scheme.

›u

›t
<

uðx; t þ kÞ2 uðx; t 2 kÞ

2k
: ð20Þ

In particular for k ¼ 1, the above reduces to the recursive relation

u i;21 ¼ u i1 2 2kgðihÞ; i ¼ 1; 2; . . . ;m:

Substituting this value of u i;21 in equation (19), we can obtain u i;1 as

u i1 ¼
A

1þ C
½u iþ1;0 þ u i21;0� þ

B

1þ C
u i0 þ 2

C

1þ C
kgðihÞ; ð21Þ

for i ¼ 1; 2; . . . ;m2 1. Thus, we can obtain all the values of u ij for j ¼ 1 level, since u i;0 ¼ f ðihÞ are

known for i ¼ 0,1,2, . . . ,m, from the given function f(x).

For second and higher order levels, we put j ¼ 1; 2; . . . ; n2 1, in the recursive relation (19), where

u0;j ¼ 0; um;j ¼ 0; j ¼ 0; 1; 2; . . . ; n

followed from the boundary conditions uð0; tÞ ¼ uðL; tÞ ¼ 0 in (13).

Applying the above computational scheme with different values of the parameters, the dynamical

responses of the solution are shown in the following figures.

Figure 5.1 is obtained with parameters a ¼ 1, b ¼ 1, c ¼ 1, k ¼ 0.05, h ¼ 0.02, f ðxÞ ¼ sinðp*xÞ;

gðxÞ ¼ 20:02*x over the interval [0,5], while figure 5.2 is presented with parameters a ¼ 1.5, b ¼ 2,

c ¼ 21.2, k ¼ 0.05, h ¼ 0.2, f ðxÞ ¼ x*cosðp*xÞ=5; gðxÞ ¼ 0:001*x over the interval [0,4.5]

and figure 5.3 is illustrated with parameters a ¼ 1, b ¼ 1.2, c ¼ 1, k ¼ 0.05, h ¼ 0.1, f ðxÞ ¼ 0:5*exp

ð0:1*xÞ*sin ðp*xÞ; gðxÞ ¼ 0:01*x over the interval [0,4].

After plotting the above numerical results through different graphs, we observe that the

computational results obtained by F-transform method, satisfy the analytical results of the uniform

exponential decay of solution. This is highly significant in the study of uniform stability of the telegraph

equation.
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Figure 5.1. Approximate deflections u(x,t) of the string for different values of time. u0, u1, u2, u3 are the deflections

of the string for the numerical value of t ¼ 0, t ¼ 0.20, t ¼ 0.35, t ¼ 0.5, respectively.

Figure 5.3. Approximate deflections u(x,t) of the string for different values of time. u0, u1, u2, u3 are the

deflections of the string for the numerical value of t ¼ 0, t ¼ 0.20, t ¼ 0.35, t ¼ 0.5, respectively.

Figure 5.2. Approximate deflections u(x,t) of the string for different values of time. u0, u1, u2, u3 are the

deflections of the string for the numerical value of t ¼ 0, t ¼ 0.20, t ¼ 0.35, t ¼ 0.50, respectively.
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6. CONCLUSION

The present mathematical study deals with the uniform exponential stability result for the vibration of a

telegraph equation, modeled by the linear differential equation (1). The uniform decay of solution is

obtained by means of an exponential energy decay estimate. As the system is uniformly stable, it is

controllable, in particular, from an arbitrary initial state to a desirable final state. Moreover, the result of

uniform stability is verified by constructing a closed form numerical scheme, with the idea of

fuzzy-transform method. The plotted graphs thus obtained verify the analytical results. Our discussion

in this presentation covers the case of uniform stability of other structural vibrations of flexible

structures, such as the vibration of rods, beams, plates etc.

Appendix Proof of theorem: To prove the theorem, we need the following inequalities as follows:

For any real number a . 0, we have Young’s inequality (cf. Mitrinovic et al.15)

j f :gj #
1

2
aj f j

2
þ

jgj
2

a

� �
: ð22Þ

Moreover, we have the following Poincare type Scheeffer’s inequality (cf. Mitrinovic et al.15)

ðL
0

u2dx #
L2

p2

ðL
0

ðuxÞ
2dx ð23Þ

because u satisfies the boundary conditions in (2). To establish the theorem, we proceed as in

Komornik,16 Gorain4 and introduce an energy-like Lyapunov functional V, defined as

VðuðtÞÞ ¼ EðuðtÞÞ þ 1GðuðtÞÞ for t $ 0; ð24Þ

where 1 . 0 is a small real number and

GðuðtÞÞ ¼

ðL
0

auut þ
b

2
u2

� �
dx: ð25Þ

Differentiating (25) with respect to t, we have

dG

dt
¼

ðL
0

au2t dx þ

ðL
0

auuttdx þ

ðL
0

buutdx ð26Þ

Using (1) and (2), we get

dG

dt
¼ a

ðL
0

u2t dx 2

ðL
0

u2x dx 2 c

ðL
0

u2dx: ð27Þ

Using energy equation (4) in (27), we get

dG

dt
¼ 22EðuðtÞÞ þ 2a

ðL
0

u2t dx: ð28Þ

Further using the inequalities (22) and (23), we can write,

ðL
0

uutdx

����
���� ¼ 1

a

ðL
0

uautdx

����
����

#
1

2a
½
p

L

ðL
0

u2dx þ
aL

p

ðL
0

u2t dx�

¼
1

2a

L

p

ðL
0

½u2x þ au2t �dx

#
L

pa
EðuðtÞÞ

¼ l0EðuðtÞÞ for t $ 0; ð29Þ
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where

l0 ¼
L

pa
: ð30Þ

Also using (23), we can write

ðL
0

b

2
u2dx #

b

2

L2

p2

ðL
0

u2x dx

# l1EðuðtÞÞ for t $ 0; ð31Þ

where

l1 ¼
bL2

p2
: ð32Þ

Now, we can estimate (25) as

2l0EðuðtÞÞ # GðuðtÞÞ # ðl0 þ l1ÞEðuðtÞÞ for t $ 0

by virtue of (29) and (31). Hence, VðuðtÞÞ as defined in (24) can be estimated as

ð12 l01ÞEðuðtÞÞ # VðuðtÞÞ # ð1þ ðl0 þ l1Þ1ÞEðuðtÞÞ for t $ 0; ð33Þ

where we choose 1 , 1
l0

so that VðuðtÞÞ $ 0 for t $ 0.

Now, taking the time derivative of (24) and applying the results (6) and (28), we get

dV

dt
¼ 221EðuðtÞÞ2 ðb2 2a1Þ

ðL
0

u2t dx

# 2
21

1þ ðl0 þ l1Þ1
V 2 ðb2 2a1Þ

ðL
0

u2t dx ð34Þ

by virtue of relation (33). Since, 1 is small, we assume that

0 , 1 , 10 ¼ min
1

l0
;
b

2a

� 	
: ð35Þ

Hence, (34) leads to the differential inequality

dV

dt
þ gV # 0 for t $ 0; ð36Þ

where,

g ¼
21

1þ ðl0 þ l1Þ1
: ð37Þ

Multiplying (36) by egt and integrating over [0,t ], we get

VðuðtÞÞ # e2gtVðuð0ÞÞ: ð38Þ

By using the inequality (32) in (38), we finally obtain the result

EðuðtÞÞ # Ae2gtEðuð0ÞÞ; for t $ 0;

where,

A ¼
1þ ðl0 þ l1Þ1

12 l01
. 1: ð39Þ
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