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ABSTRACT

Effect of thermal conductivity on gravitational instability of quantum plasma in the presence of fine

dust particles has been investigated. Following the linearized stability theory and normal mode

analysis, the paper established a general dispersion relation of the problem. Modified condition of

Jeans gravitational instability is obtained due to quantum effect. Numerical calculations were

performed to find the effect of each parameter on the growth rate of instability. The effect of fine dust

particles does not affect the instability condition of the system but stabilizes the system by decreasing

the growth rate of unstable mode. Curves show the destabilizing effect of thermal conductivity and

stabilizing effect of quantum correction on the growth rate of unstable mode. The stability of the system

is discussed by Routh-Hurwitz criterion of stability.
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1. INTRODUCTION

In recent years, numerous researchers have been carrying out investigations on various salient features

of self-gravitational instability of the gaseous plasma contaminated by the different parameters

encountered very often in space and laboratory plasmas. The gravitational instability of ideal plasma

has been discussed by Chandrashekhar.1 He has considered hydromagnetic stability of self-gravitating,

unbounded, homogeneous, rotating plasma of infinite conductivity. His results show that the presence

of steady magnetic field and uniform rotation does not affect the Jeans stability criterion. Yang et al.2

have investigated the large–scale gravitational instability and star formation in molecular clouds.

Prajapati et al.3 have investigated the problem of self-gravitational instability of rotating viscous Hall

plasma arbitrary radiative heat-loss functions and electron inertia. Ali and Shukla4 have studied the

Jeans instability in plasma with positive negative charged and neutral dust components. Jacobs and

Shukla5 have investigated the problem of self-gravitational instability of partially ionized astrophysical

plasma embedded in a large-scale magnetic field. Salimullah et al.6 have studied the Jeans instability

of quantum dusty magnetoplasma. Thus we find that the problem of self-gravitational instability of

astrophysical gaseous and dusty plasmas is discussed in various ways by many investigators taking

different assumptions and parameters.

The importance of thermal conductivity, as it is associated with most of the astrophysical

situations, is an established fact. The problem of thermal instability, arising owing to various heat

mechanism of interstellar matter, plays an important role in astrophysical condensations and the

formation of prominences through condensation of coronal material. Coroniti7 investigated the

dissipative effects of viscosity, finite electrical and thermal conductivities on shock waves. Kato and

Kumar8 have studied the problem of the gas plasma incorporating finite thermal conductivity; and

in their results, they found that adiabatic speed of sound is being replaced by the isothermal one,

much similar to what happens in the absence of magnetic field. Chhajlani and Vyas9 have

investigated the effects of thermal conductivity and suspended particles on the gravitational

instability of magnetized rotating plasma through porous medium. Recently, Shaikh and Khan10

have discussed the instability of thermally conducting self-gravitating system. Thus, due to the

importance of thermal conductivity in the study of self-gravitational instability of gaseous plasma

we are willing to take its consideration in the present study along with quantum effects and fine

dust particles.

In recent interstellar medium (ISM) observations, it has been established that comets consist of a

dusty ‘Snowball’ of a mixture of frozen gases which in the process of their journey changes from solid

to gas and vice versa. Sharma and Sharma et al.11– 14 have investigated the effect of fine dust particles

(suspended particles) on the onset of Benard convection in hydromagnetics incorporating various

parameters. The importance of suspended particles in the study of gravitational instability of

magnetized and rotating plasma has been studied by Chhajlani and Sanghvi.15 Pensia et al.16 have

investigated the role of Coriolis force and suspended particles in the fragmentation of mater in the

central region of galaxy and suggested that Coriolis force and suspended particles play important role

in the central region of galaxy. The effect of porosity and suspended particles on Jeans instability under

thermal effect has been studied by Pensia et al.17 Thus the aim of the present paper is to study the

effect of thermal conductivity on self-gravitational instability of an infinite homogeneous magnetized

quantum plasma in the presence of fine dust particles.

The problem of thermal and self-gravitational instability in quantum plasmas has been an important

area of research in the recent years. The study of quantum effects in plasma becomes important when

the de Broglie of the charge carriers is equal or greater than the interparticle distance. The quantum

correction in gaseous plasma was first studied by Pines.18,19 Gardner20 has given the quantum

hydro-dynamic (QHD) model for semi-conductor physics to describe the transport of charge,

momentum and energy in plasmas. The quantum magneto-hydrodynamic (QMHD) model was

obtained by Haas21 with the help of QHD model with magnetic field based on the Wigner–Maxwell

equations. Lundin et al.22 used the QMHD model to investigate the problem of Jeans instability of spin

quantum plasma in the presence of a magnetic field. Ren et al.23 studied the effect of electrical

resistivity on Jeans instability of quantum magnetoplasma. Shukla and Stenflo24 investigated the Jeans

instability of self-gravitating astrophysical quantum dusty plasma. The effect of Hall current on Jeans

instability viscous quantum plasma in the presence of a magnetic field was examined by Prajapati and

Chhajlani.25 Thus in the present analysis we will apply the QMHD model on self gravitating, and

thermally conducting plasma having fine dust particles.
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It is clear, from all the above studies, that none of the authors have carried the joint study of the

effects of fine dust particles, thermal conductivity and quantum correction on the problem of self-

gravitational instability of gaseous plasma. Thus, in the present work, we are motivated to investigate

the effect of thermal conductivity on self-gravitational instability of gaseous quantum plasma in the

presence of fine dust particles. The result of the present study will help to understand the interstellar

medium structure.

2. LINEARIZED PERTURBATION EQUATIONS

We consider an infinite homogeneous viscous, self-gravitating quantum plasma including thermal

conductivity, and fine dust particles.

If we assume uniform particle size, spherical shape and small relative velocities between the two

phases, then the net effect of particles in the gas is equivalent to an extra body force term per unit

volume KsNð~v2 ~uÞ and is added to the momentum transfer equation for gas, where Ks the constant

given by Stokes’ drag formula Ks ¼ 6prn r, r being the particle radius, n is the kinetic viscosity of clean

gas, r and N represents the density of gas and the number density of particles, respectively. ~u, and ~v,

denotes the gas and particle velocity, respectively. Self-gravitational attraction U is added along with

the kinetic viscosity term in the equation of motion for gas. In writing the equation of motion, for the

particles, we neglect the buoyancy force as its stabilizing effect, for the case of two free boundaries is

extremely small. Inter particle reactions are also ignored by assuming the distance between particles to

be too large compared with their diameters.

The QMHD model is considered as given by Haas21 with thermal conductivity and fine dust particles,9

let the perturbation of the type q ¼ qþ dq, and perturbations in fluid pressure, fluid density, fluid

velocity, temperature and gravitational potential is given by dp, dr, d~uðux ; uy ; uzÞ, dT and dU,

respectively. Thus we construct the following set of linearized equations consisting momentum transfer

for fluid and particles, continuity, thermal energy equation, Poisson equation, and gas equation:

r
›d~u

›t
¼ 2~7dpþ ~7dU þ KsNð~v2 ~uÞ þ rnð72~vÞ þ

"2

4memi

~7ð72drÞ: ð1Þ

t
›

›t
þ 1

� �
~v ¼ ~u: ð2Þ

›r

›t
þ r~7:~u ¼ 0: ð3Þ

rCp
›

›t
dT 2

›

›t
dp ¼ l72dT : ð4Þ

72dU ¼ 24pGdr: ð5Þ

dT

T
þ

dr

r
¼

dp

p
: ð6Þ

where t ¼ m=Ks, and the parameters G, p, T, Cp, l, R, " ¼ h=2p, respectively denotes the gravitational

constant, pressure, temperature, specific heat at constant pressure, coefficient of thermal conductivity,

gas constant, and the Planck constant divided by 2p.

3. DISPERSION RELATION

Let us consider plane waves propagated in the X and Z-directions, so that all perturbed quantities

vary as

exp i kxx þ kzz þ stð Þf g: ð7Þ

where s is the frequency of harmonic disturbances, kx,z, are wave numbers in X and Z direction,

respectively, such that k2x þ k2z ¼ k 2. For perturbation of the form (7), using (2) to (6) the algebraic
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amplitude of equation (1) can be written as

2ts2 þ isaþ nk 2
� �

ux þ
ikx

k 2
b

sV2
J þVkV

2
I

sþVk

� �
s ¼ 0 ð8Þ

2ts2 þ isaþ nk 2
� �

uy ¼ 0: ð9Þ

2ts2 þ isaþ nk 2
� �

uz þ
ikz

k 2
b

sV2
J þVkV

2
I

sþVk

� �
s ¼ 0: ð10Þ

Now taking the divergence of equation (1) using (2) to (6) we get as

2its3 2 s2aþ is
sV2

J þVkV
2
I

sþVk

� �
tþ nk 2

� �
þ

sV2
J þVkV

2
I

sþVk

� �� �
s ¼ 0 ð11Þ

Equations (8)–(11) can be written in the matrix form as

½A�½B� ¼ 0 ð12Þ

where [A ] is a single column matrix with elements ðux ; uy ; uz; sÞ, and [B ] is forth order square matrix

whose elements are

X 11 ¼ 2ts2 þ isaþ nk 2
� �

: X 12 ¼ 0: X 13 ¼ 0: X 14 ¼
ikx

k 2

sV2
J þVkV

2
I

sþVk

� �
b: X21 ¼ 0:

X22 ¼ 2ts2 þ isaþ nk 2
� �

: X23 ¼ 0: X24 ¼ 0: X31 ¼ 0: X32 ¼ 0:

X33 ¼ 2ts2 þ isaþ nk 2
� �

: X34 ¼
ikz

k 2

sV2
J þVkV

2
I

sþVk

� �
b: X41 ¼ 0: X42 ¼ 0: X43 ¼ 0:

X44 ¼ 2its3 2 s2aþ is
sV2

J þVkV
2
I

sþVk

� �
tþ nk 2

� �
þ

sV2
J þVkV

2
I

sþVk

� �� �
:

a ¼ 1þ nk 2tþ
KsNt

r

� �
;

b ¼ 1þ stð Þ; V2
I ¼ k 2c 022 4pGrþ

"2k 4

4memi

� �
; V2

J ¼ V2
j þ

"2k 4

4memi

� �
:

V2
j ¼ k 2c 2 2 4pGr

	 


Vk ¼ lgk 2=rcp
	 


, where c 2 ¼ gc 02, is the adiabatic velocity of sound, c 0 ¼
ffiffiffiffiffiffiffiffi
p=r

p
, is the

isothermal velocity of the sound, cp is the specific heat at constant pressure s ¼ dr=r is the

condensation of the medium.

For a nontrivial solution of equation (12) the determinant of the square matrix on the left hand side

should vanish, leading to the dispersion relation.

2ts2þ isaþnk 2
� �3

£ 2its32s2aþ is
sV2

J þVkV
2
I

sþVk

� �
tþnk 2

� �
þ

sV2
J þVkV

2
I

sþVk

� �� �
¼0: ð13Þ

Equation (13) represents the desired dispersion relation for an infinitely extending, self-gravitating

viscous plasma having fine dust particles under the influence of thermal conductivity and quantum

corrections. We find that, in this dispersion relation, the term due to the thermal conductivity have

entered through the factor Vk and that the term due to the quantum correction have entered through

the factor " 2k 4=4memi

	 

. If we ignore the effects of quantum correction and thermal conductivity then

(13) reduces to Sharma11 and also reduces to Chhajlani and Sanghavi15 obtained for non-rotating

unmagnetized plasma. Again in the absence of thermal conductivity, viscosity and fine dust particles

the preceding dispersion relation reduces to Ren et al.23 on ignoring the effects of magnetic field and

electrical resistivity in their case.
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Thus with these correlations we find that the dispersion relation (13) is modified due to the

effects of quantum correction, thermal conductivity and fine dust particles. The above dispersion

relation (13) can alternatively be subjected to the following two conditions with substitutions for V2
J ,

V2
I , a, and is ¼ v.

tv2 þ v 1þ nk 2tþ
KsNt

r

� �
þ nk 2 ¼ 0: ð14Þ

This dispersion relation shows the combined influence of kinematic viscosity and fine dust particles

on waves propagating in hydro-magnetic fluid plasma. This dispersion relation is similar to that of

already obtained by Sharma11 and Chhajlani and Vyas.9 Since all the coefficients and the constant term

of (14) are positive hence, following Descartes’ rule, it does not have a positive real root or a complex

root whose real part is positive, and so the system is stable. Thus, we conclude that the viscous force

is capable to stabilize the system while the presence of fine dust particles increases this effect.

The second factor of equation (13) equating to zero, we obtain as

tv4 þ v3 1þ t nk 2 þ
KsN

r
þVk

� �� �
þ v2 Vk 1þ nk 2tþ

KsNt

r

� �
þV2

J tþ nk 2

� �

þ v VktV
2
I þ nk 2Vk þV2

J

� �
þVkV

2
I ¼ 0

ð15Þ

This represents the dispersion relation for self-gravitating plasma incorporating the effects of

kinematic viscosity, thermal conductivity, fine dust particles, and quantum correction. Thus, this is a

gravitating mode affected by viscosity, thermal conductivity, the presence of fine dust particles and

quantum correction. In the absence of quantum correction, this dispersion relation is similar to that

already obtained by Chhajlani and Vyas.9 For a thermally non-conducting medium without having

fine dust particles, the above dispersion relation is reduced to Ren et al.,23 and Prajapati and

Chhajlani25 for longitudinal direction of propagation. This fourth degree equation (15) may

be reduced to particular cases so that the effect of each parameter is discussed separately.

Case I: – l ¼ Q ¼ 0. To study the particular cases we first consider thermally non-conducting,

gaseous plasma without quantum effect, the dispersion relation (15) reduces to

tv3 þ v2 1þ nk 2tþ
KsNt

r

� �
þ v V2

j tþ nk 2
� 


þV2
j ¼ 0 ð16Þ

This cubic equation represents a self-gravitating viscous medium having dust particles, and it is

identical to equation (16) of Pensia et al.17 The effect of fine dust particles enters through two

parameters, t (relaxation time) and (KsNt)/r which is mass concentration of particles. It is clear

from equation (16) that when V2
J , 0, the product of the roots or at least one root of s is

positive. Hence, the system is unstable. Thus for the cases of equation (16) the condition of

instability is

V2
j ¼ c 2k 2 2 4pGr

	 

, 0

k , kj ¼
4pGr
c 2

	 
1=2

lj ¼ c p
Gr

� 
1=2

9>>>>>=
>>>>>;

ð17Þ

where kj is the Jeans wave number and lj is the Jeans length. Equation (17) is an original Jeans

expression for gravitational instability. The system is unstable for all Jeans length l . lj; of Jeans

wave number k , kj . It is evident from equation (17) that Jeans criterion of instability remains

unchanged in the presence of dust particles for viscous medium.

In the ISM, the gravitational unstable modes are responsible for structure formation; thus, the choice

of the arbitrary values of relaxation time t and Stokes’ drag KS parameters in the present problem in

order to study the effect fine dust particles on the growth rate of an unstable mode. To solve the

dispersion relation (16) numerically we introduce the dimensionless parameters (Appendix A) in terms

of self-gravitation.
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In Figures 1 and 2, we have depicted the dimensionless growth rate versus dimensionless wave

number, for various arbitrary values of the Stokes’ drag K
*

s constant and t.

Figure 1 is plotted for the growth rate of instability (positive imaginary root of v *) against the

dimensionless wave number k * with variation in the Stokes’ drag constant K
*

s ¼ 0:0;0:5; 1:0; 1:5, with

taking the values of n * and t as unity.

From the curves we find that, due to an increase in the Stokes’ drag constant parameter, the growth

rate of instability decreases. The peak value of the growth rate is affected by the presence of the Stokes’

drag constant parameter and it is different for different values of K
*

s. However, it may be noted that

Stokes’ drag constant parameter tends to stabilize the configuration.

In Figure 2, we have plotted for the growth rate of an unstable mode (positive imaginary root of v *)

against the dimensionless wave number k * with variation in the value of t ¼ 0.5, 1.0, 1.5, 2.0, with

taking the values of n * and K
*

s as unity.

From Figure 2, it is observed that the t has a similar effect on the growth rate compared to that of the

Stokes’ drag constant K
*

s. In other word, due to an increse in the value of t, the growth rate of the
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Figure 2. The growth rate of instability is plotted against the dimensionless wave number k * with variation in the

value of t ¼ 0.5, 1.0, 1.5, and 2.0, with taking the values of n * and K
*

s as unity.
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Figure 1. The growth rate of instability is plotted against the dimensionless wave number k * with variation in the

Stokes’ drag constant K
*

s ¼ 0.0, 0.5, 1.0, 1.5, with taking the values of n * and t as unity.
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instability decreases. Hence the value of t has a stabilizing influence on the growth rate of the

instability.

Case II: – l ¼ 0; Q – 0. In the case of thermally non-conducting, self-gravitating quantum plasma

having fine dust particles, the dispersion relation (15) reduces to

tv3 þ v2 1þ nk 2tþ
KsNt

r

� �
þ v V2

J tþ nk 2
	 


þV2
J ¼ 0: ð18Þ

This dispersion relation (18) shows the combined influence of viscosity, quantum correction and the

effect of the fine dust particles on self-gravitational instability of gaseous plasma. The modified Jeans

instability criterion in terms of quantum correction can be easily obtained from the constant term of

equation (18) and is given by

k 2c 2 þ
"2k 4

4memi

2 4pGr

� �
, 0: ð19Þ

The expression of critical Jeans wave number and the corresponding Jeans length is given by

kj1 ¼ kj 1þ
"2k 2

4memic 2

� �21=2

; lj1 ¼ lj 1þ
"2p2

memic 2l2

� �1=2
: ð20Þ

Thus the system will be unstable for all wave numbers k , kj1, (where kj1 is critical Jeans wave

number affected by quantum correction) given by equation (20). The above condition of instability (19)

is coincident with that found by Ren et al.23 and Prajapati and Chhajlani.25 From equation (20),

it is obvious that the quantum correction term couples with the adiabatic sound velocity and

decreases the Jeans wave number. Thus, the effect of quantum term is to stabilize the system.

The stabilizing effect of quantum correction will be verified by solving the dispersion relation (15)

numerically using the dimensionless quantities.

Figure 3 is plotted for the growth rate of instability (positive imaginary root of v *) against the

dimensionless wave number k * with variation in the quantum correction Q * ¼ 0:0; 0:5; 1:0; 1:5, with

taking the values of n *, t, and K
*

s as unity.

Figure 3 shows the variation in growth rate with respect to quantum correction. Here we notice that

when the system is classical (Q * ¼ 0), the growth of instability is maximum while the growth rate

decreases with the increasing value of quantum correction (Q * ¼ 0.5, 1.0, 1.5). Thus, from Figure 3,

we conclude that the effect of quantum is to stabilize the system.

Case III: – l ¼ Q – 0. For this case of viscous self-gravitating quantum plasma subject to thermal

conduction in the presence of fine dust particles, the original dispersion relation represented by the
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Figure 3. The growth rate of instability is plotted against the dimensionless wave number k * with variation in the

quantum correction Q * ¼ 0.0, 0.5, 1.0, 1.5, with taking the values of n *, t, and K
*

s as unity.
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(15) remains unchanged, and the condition of instability obtained from constant term of the last

coefficient

k 2c 022 4pGrþ
"2k 4

4memi

� �
, 0 ð21Þ

Critical Jeans wave number and Jeans wavelength is given by

k , kj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pGr

c
02 þ " 2k 2

4memi

� 

vuut : lj2 ¼ lj

1þ " 2p 2

memic 2l 2

� 

g

2
4

3
5
1=2

ð22Þ

This is the new condition of gravitational instability found in present analysis due to inclusion of

thermal conductivity and quantum correction. It may be noted that the condition of gravitational

instability does not involve the effect of viscosity and fine dust particles. Thus, the Jeans criterion of

instability remains valid but the expression of the critical Jeans wave number is modified by

considering quantum correction and thermal conductivity but not affected by the presence of fine dust

particles. On comparing (15) and (18), we see that due to the inclusion of thermal conductivity, third

ordered equation changes to the fourth ordered equation, means one mode is increased, and the

adiabatic sonic speed is replaced by isothermal sonic speed in the expression of critical wave number.

In the present case, we have considered the effects of fine dust particles and thermal conductivity

parameters, but Ren et al.23 and Prajapati and Chhajlani25 have not considered these parameters.

Thus, the dispersion relation in the present analysis is modified due to the simultaneous inclusion of

fine dust particles and thermal conductivity, and the condition of gravitational instability is modified by

the presence of thermal conductivity. Thus fine dust particles have no role to play in the condition of

gravitational instability. From equations (22) and (20) we obtain

lj2 ¼ lj1
1

g

� �1=2

ð23Þ

It is clear from equation (23) that the Jeans length is reduced due to thermal conduction [as g . 1],

thus the system is destabilized.

To conform, the destabilizing effect thermal conductivity on the growth rate of instability we solve

(15) numerically by introducing the dimensionless quantities (appendix A) in terms of self-gravitation.

Figure 4 is plotted for the growth rate of instability (positive imaginary root of v *) against the

dimensionless wave number k * with variation in the thermal conductivity l * ¼ 0:0; 0:5; 1:0; 1:5,

with taking the values of n *, t, K
*

s and Q * as unity.
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Figure 4. The growth rate of instability is plotted against the dimensionless wave number k * with variation in the

thermal conductivity l * ¼ 0:0; 0:5; 1:0; 1:5, with taking the values of n *, t, K
*

s and Q * as unity.
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Figure 4 shows the effect of thermal conductivity on the growth rate of instability. Here we see that

the increasing value of thermal conductivity increases the growth rate of instability. Thus, the thermal

conductivity shows a reverse effect, in comparison to quantum correction, on the growth rate of

instability and thus destabilizes the system.

In order to discuss the dynamical stability of the system represented by (15), we apply the

Routh-Hurwitz criterion. According to this criterion all the coefficients of the polynomial equation (15)

should be positive. If V2
J . 0 and V2

I . 0, then all the coefficients of (15) are positive and the

necessary condition for stability is satisfied. To satisfy the sufficient condition we calculate the minors

of the Hurwitz matrix formed by these coefficients, which are

D1 ¼
1

t
þVk þ nk 2 þ

KsN

r

� �
. 0:

D2 ¼
1

t
D1 Vk 1þ nk 2tþ

KsNt

r

� �
þV2

J tþ nk 2

� �
. 0:

D3 ¼
1

t
D2 VktV

2
I þ nk 2Vk þV2

J

� �
. 0:

D4 ¼
VkV

2
I

t
D3 . 0

ð24Þ

It is clear from (24) that all D’s are positive. Therefore, the system represented by (15) is stable if the

conditions V2
J . 0 and V2

I . 0 are satisfied.

4. CONCLUSIONS

In the present paper, we have analyzed the effect of thermal conductivity on the gravitational instability

of quantum plasma in the presence of fine dust particles. The general dispersion relation is obtained,

which is modified due to the presence of these parameters. We find that the Jeans criterion of

gravitational instability remains valid but the expression of the critical Jeans wave number is modified

by parameter of quantum correction. Owing to the inclusion of the thermal conductivity, the adiabatic

sound velocity is replaced by the isothermal velocity of sound. The effect of fine dust particles does not

affect the instability condition of the system but stabilize the system by decreasing the growth rate of

unstable mode. The stability of the system is discussed by using Routh-Hurwitz criterion of stability.

APPENDIX A

Numerical calculations were performed, taking g ¼ 5/3, to determine the roots of v * from dispersion
relation (15), (16) and (18) as a function of dimensionless wave number k * for different values of the various
dimensionless parameters defined as

v * ¼
v

4pGr
	 
1=2 ; k * ¼

kc

4pGr
	 
1=2 ; n * ¼

n 4pGr
	 
1=2

c 2
; l * ¼

l 4pGr
	 
1=2
rcpc 2

; Q * ¼
"2k2j
4memi

K
*

s ¼
NKs

r 4pGr
	 
1=2 ; V

*2

j ¼ k *2 2 1; V
*2
I ¼ k *2 2 g:
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