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ABSTRACT

We realize noncommutative phase spaces as coadjoint orbits of extensions of the Aristotle group in a

two-dimensional space. Through these constructions the momenta of the phase spaces do not

commute due to the presence of a naturally introduced magnetic field. These cases correspond to the

minimal coupling of the momentum with a magnetic potential.
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1. INTRODUCTION

Classical electromagnetic interaction can be introduced through the modified symplectic form

s ¼ dpi ^ dq i þ ð1=2ÞF ijdq
i ^ dqj .1–3 This has been initiated by J.M. Souriau3 in the seventies: one of

his important theorems says in fact that when a symmetry group G acts on a phase space transitively,

then the latter is a coadjoint orbit of G, endowed with its canonical symplectic form. The original

applications that Souriau presented in his book3 concern both the Poincaré and the Galilei groups.

Recently many authors,4–8 . . . generalized the modification of the symplectic form by introducing the

so-called dual magnetic field G by considering s ¼ dpi ^ dq i þ ð1=2ÞF ijdq
i ^ dqj þ ð1=2ÞGijdpi ^ dpj .

The fields F and G are responsible of the noncommutativity respectively of momenta and positions.

Noncommutative phase spaces are then defined as spaces on which coordinates satisfy the relations:

{q i; q j} ¼ Gij; {q i; pj} ¼ dij; {pi; pj} ¼ F ij;

where d i
j is a unit matrix, whereas Gij and F ij are functions of positions and momenta. Moreover the

physical dimensions of Gij and F ij are respectively M21T and MT 21, M representing a mass while

T represents a time.

In more recent times, Souriau’s ideas were later extended to other groups. In Duval et al.9 for

example, a classical “photon ”model was constructed, based entirely on the Euclidian group Eð3Þ.

As the latter is simultaneously a subgroup of both the Poincaré and the Galilei groups, hence the

“euclidian photon”constructed by Souriau’s orbit method is indeed a reduction of both the relativistic

and the nonrelativistic massless models as presented by Souriau.3 There is an intermediate group

between the Euclidian and the Galilei groups dubbed, again by Souriau,10 the Aristotle group: it also

contains time translations but not boosts.

This work is precisely to study the classical dynamical systems associated with this intermediate

group. We use Souriau’s method also called coadjoint orbit method to contruct phase spaces endowed

with modified symplectic structure on the Aristotle group. Explicitly, we demontrate that such deformed

objects can be generated in the framework of noncentrally extended Aristotle algebra as well as in the

framework of its corresponding central extension. The obtained in such a way phase spaces do not

commute in momentum sector due to the presence of a naturally introduced magnetic field. In other

words, the obtained cases correspond to the minimal coupling of the momentum with a magnetic

potential.

Note that there has been other more recent works about a similar construction starting with the

centrally extended “anisotropic Newton-Hooke” groups11 and with the noncentrally extended of both

Para-Galilei and Galilei groups12 in a two-dimensional space.

The paper is organized as follows. In section two, we give symplectic realizations of the Aristotle

group in two-dimensional space using its first and second central extensions. In the third section,

we realize symplectically both the noncentrally extended Aristotle Lie group and its central extension

counterpart. As the coadjoint orbit construction has not been curried through this Lie group before,

physical interpretations of new generators of the extended corresponding Lie algebras are also given.

2. FIRST AND SECOND CENTRAL EXTENSIONS OF THE ARISTOTLE GROUP

It is well known that a free dynamical system is a geometric object for the Aristotle group10 which is the

group of both Euclidean displacements and time translations. Explicitly, the Aristotle group Að2Þ in a

two-dimensional space is a Lie group whose multiplication law is given by

ðu; ~x; tÞðu 0; ~x 0; t 0Þ ¼ ðuþ u 0; RðuÞ~x 0 þ ~x; t þ t 0Þ; ð1Þ

where ~x is a space translation vector, t is a time translation parameter and u is a rotation parameter.

Its Lie algebra A is then generated by the left invariant vector fields

J ¼
›

›u
; ~P ¼ Rð2uÞ

›

~x
; H ¼

›

›t

such that the only nontrivial Lie brackets are

½ J; Pi� ¼ Pj1
j
i; i; j ¼ 1; 2: ð2Þ
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The multiplication law (1) implies that the element g of this group can be written as:

g ¼ expð~x~Pþ tHÞexpðuJÞ: ð3Þ

2.1 First central extension of Að2Þ

From the relation expð2pJÞH expð22pJÞ ¼ H and by use of the standard methods,13–17 we obtain the

following nontrivial Lie brackets for the first central extension Â of A ð2Þ

½J; Pi� ¼ Pj1
j
i; ½Pi; Pj� ¼

1

r 2
S1ij; i; j ¼ 1; 2; ð4Þ

where S generates the center of Â while r is a constant whose dimension is a length.

Let g be given by (3) and ĝ ¼ expðwSÞg be the corresponding element in the connected Lie group

associated to the extended Lie algebra Â . By use of the Baker-Campbell-Hausdorff formulae18 and by

identifying ĝ with ðw; u; ~x; tÞ, we find that the multiplication law of the connected extended Lie group is:

ðw; u; ~x; tÞðw 0; u 0; ~x 0; t 0Þ ¼ w0 þ
1

2r 2
Rð2uÞ~x £ ~x 0 þ w; uþ u 0; RðuÞ~x 0 þ ~x; t þ t 0

� �

or equivalently

ða; gÞða0; g0Þ ¼ ðaþ a0 þ cðg; g0Þ; gg0Þ;

where cðg; g0Þ ¼ ð1=2r 2ÞRð2uÞ~x £ ~x0 is a two-cocycle and gg0 is the multiplication law (1).

The adjoint action Adgðd ĝÞ ¼ gðd ĝÞg21 of A on the Lie algebra Â is given by:

Adðu;~x;tÞðdw; du; d~x; dtÞ ¼ dwþ
1

r 2
Rð2uÞ~x £ d~x2

1

2r 2
~x2du; du; RðuÞd~xþ 1ð~xÞdu; dt

� �

with

1ð~xÞ ¼
0 x 2

2x 1 0

 !
: ð5Þ

If the duality between the extended Lie algebra and its dual is given by the action

jduþ ~p:d~xþ ldwþ Edt , where ~p is a linear momentum, l is an action, j is an angular momentum while

E is an energy, then the coadjoint action of the Aristotle Lie group is

Ad*
ð~x;t;uÞ

ðj; ~p; l; EÞ ¼ j þ
mv

2
ð~x2Þ þ ~x £ RðuÞ~p; RðuÞ~p2mv1ð~xÞ; l; E

� �
;

where we have used the “wave-particule duality” lv ¼ mc 2 and the relation c ¼ vr linking the

velocity c, the frequency v and the universe radius r.

The Kirillov form in the basis ðJ; P1; P2;H; SÞ is

KðaÞ ¼

0 p2 2p1 0 0

2p2 0 mv 0 0

p1 2mv 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBBB@

1
CCCCCCCA
:

The coadjoint orbit of the central extended Lie group on the dual of its Lie algebra is characterized by

the two trivial invariants l and E, and a nontrivial invariant

s ¼ j þ
p2

2mv
þ

mvq2

2
; ð6Þ
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where p and q are defined by

q ¼ 2
p2

mv
; p ¼ p1: ð7Þ

Let us denote by Oðs;l;EÞ the maximal coadjoint orbit of the Aristotle group Að2Þ on the dual of its central

extended Lie algebra.

The restriction V ¼ ðVabÞ of the Kirillov form to the orbit is then

V ¼
0 mv

2mv 0

 !

It follows that the symplectic form is then s ¼ dp ^ dq.

The symplectic realization of the Aristotle Lie group is

Dðu;~x;tÞðp; qÞ ¼ cos u pþmvq sin u2mvx 2;2
p

mv
sin uþ q cos u2 x 1

� �
:

The Poisson bracket corresponding to this symplectic structure is then the canonical one and the time

translation subgroup acts trivially on the orbit.

To overcome this fact, let us study the symplectic realization of the second central extended Aristotle

Lie group.

2.2. Second central extension

By using standard methods, we have that the second central extension of Aristotle Lie algebra in

two-dimensional space is generated by: J; P1; P2;H; S;N satisfying the nontrivial Lie brackets:

½ J; Pi� ¼ Pj1
j
i ; ½Pi; Pj� ¼

1

r 2
S1ij; ½S;H� ¼ vN:

The multiplication law of this extended Lie group is given by:

ðc;w; u; ~x; tÞðc 0;w0; u 0; ~x 0; t 0Þ

¼ cþ c 0 2 vtw0;w0 þ
1

2r 2
Rð2uÞ ~x £ ~x 0 þ w; uþ u 0; RðuÞ ~x 0 þ ~x; t þ t 0

� �
:

The adjoint action of Â on its extended Lie algebra is explicitly given by

Adðw;u;~x;tÞðdc; dw; du; d~x; dtÞ

¼ dc2 vtdwþ vwdt; dwþ
1

r 2
Rð2uÞ~x £ d~x2

1

2r 2
~x2du; du; RðuÞd~xþ 1ð~xÞdu; dt

� �
;

where 1ð ~x Þ is given by the relation (5).

If the duality between the extended Lie algebra and its dual is given by the action

jduþ ~p:d~xþ Edt þ ldwþ hdc, then the coadjoint action of the extended Aristotle Lie group

is such that

Ad*
ðw;~x;t;uÞ

ðj; ~p; E; l; hÞ

¼ j þ ~x £ RðuÞ~p2
lþ hvt

2r 2
~x2; RðuÞ~pþ

l

r 2
1ð~xÞ þ

h

r 2
vt1ð ~x Þ; E 2 hvw; lþ hvt; h

� � ð8Þ

meaning that h is a trivial invariant.
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In the basis ðJ; P1; P2;H; S;NÞ, the Kirillov form is

KðaÞ ¼

0 p2 2p1 0 0 0

2p2 0 mv 0 0 0

p1 2mv 0 0 0 0

0 0 0 0 2hv 0

0 0 0 hv 0 0

0 0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð9Þ

The coadjoint orbit of Â on the dual Â* of the second central extension Lie algebra is characterized

by the trivial invariant h and by the nontrivial invariant given by relation (6).

The maximal coadjoint orbit is quadri-dimensional and is denoted by Oðh;sÞ.

The restriction V ¼ ðVabÞ of the Kirillov form (10) to the orbit is then

V ¼

0 mv 0 0

2mv 0 0 0

0 0 0 2hv

0 0 hv 0

0
BBBBB@

1
CCCCCA:

It follows that the symplectic form is in this case given by

s ¼ dp ^ dqþ da ^ dl;

where

a ¼
E

hv
:

From the relations (8), we get that the symplectic realizations of the extended group on its maximal

coadjoint orbit ðp0; q 0; l 0;a0 Þ ¼ Dðw;u;x1;x2;tÞðp; q; l;aÞ is

p0 ¼ cos u p2mv sin u q2mvx 2 þ
h

r 2
v x 2t; l 0 ¼ lþ hvt

q0 ¼
1

mv
sin u pþ cos u q2 x 1 2

h

mr 2
x 1 t; a 0 ¼ aþ w:

The Poisson bracket of two functions f 1 and f 2 on the orbit corresponding to the above symplectic

form is

{f 1; f 2} ¼
›f 1

›p

›f 2

›q
2

›f 1

›q

›f 2

›p
þ

›f 1

›l

›f 2

›a
2

›f 1

›a

›f 2

›l
:

It follows that

{p; q} ¼ 1; {l;a} ¼ 1

the other Poisson brackets being trivial.

The equations of motion are then

dp

dt
¼ 0;

dl

dt
¼ hv;

dq

dt
¼ 0;

da

dt
¼ 0:

In this case, the coadjoint orbit is a direct product of two 2-dimensional phase spaces R 2 ¼ {ðp; qÞ}Þ

and R 2 ¼ {ðl;aÞ}Þ. Note that a is a dimensionless quantity. For its particular value a ¼ 1=2p, the
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energy E is given by

E ¼ "v;

where h ¼ 2p", relation analogue to that of Quantum Mechanics.

With the second central extension of Aristotle group in two dimensional space, we have then also

realized a phase space with commuting coordinates (canonical case). Moreover, the position and the

linear momentum do not depend on time.

We prove, in the following section, that noncommutative phase spaces can be obtained by

considering the noncentral extension of the two-dimensional Aristotle group.

3. NONCENTRAL EXTENSION OF ARISTOTLE GROUP

In the previous section, we find that one can not construct noncommutative phase spaces by coadjoint

orbit method on the first and second central extensions of the Aristotle group because symplectic

structures obtained are canonical which means that positions commute as well as momenta.

In this section, we see that this construction is possible when we consider a noncentral extension of

this Lie group.

3.1. Noncentrally extended group and its maximal coadjoint orbit

Let Â 1 be the noncentrally extended Aristotle Lie algebra satisfying the non trivial Lie brackets

½ J; Pi� ¼ Pj1
j
i; ½ J; F i� ¼ F k1

k
i ; ½Pi; Pj� ¼

1

r 2
S1ij; ½Pi;H� ¼ F i; i; j ¼ 1; 2: ð10Þ

If ĝ ¼ expðwS þ ~h~FÞexpð~x~PÞexpðuJÞexpðtHÞ is the general element of the connected extended Aristotle

group, we verify that the corresponding multiplication law is

ðw00; u00; ~h00; ~x00; t 00Þ ¼ ðw; u; ~h; ~x; tÞðw0; u 0; ~h 0; ~x 0; t 0Þ

with

w00 ¼ w 0 þ
1

2r 2
Rð2uÞ ~x £ ~x 0 þ w; ~h 00 ¼ RðuÞ ~h 0 2 RðuÞ ~x 0t þ ~h

~x 00 ¼ Rðu Þ ~x 0 þ ~x; u 00 ¼ u 0 þ u; t 00 ¼ t 0 þ t:

It follows that the adjoint action of the noncentral extended Aristotle group on its Lie algebra is such that

21du 0 ¼ du; dt 0 ¼ dt; d~x 0 ¼ RðuÞd~xþ 1ð~xÞdu

d ~h0 ¼ RðuÞd ~hþ 1ð ~hÞdu2 RðuÞd~xt þ ~xdt

dw0 ¼ dwþ
1

r 2
RðuÞ~x £ d~x2

~x2

2r 2
du:

If the duality between the extended Lie algebra and its dual is given by the action

jduþ ~f:d ~hþ ~p:d~xþ hdwþ Edt , then the coadjoint action is such that h0 ¼ h and

~f 0 ¼ RðuÞ~f; ~p 0 ¼ RðuÞ~pþ RðuÞ~ft þ
h

r 2
1ð ~x Þ ð11Þ

j 0 ¼ j þ ~x £ RðuÞ~pþ ~h £ RðuÞ~f2
h

r 2
~x2 ð12Þ

E 0 ¼ E 2 ~x:RðuÞ~f:

The coadjoint orbits denoted by Oðh;f ;UÞ are characterized by the trivial invariant h and by two nontrivial

invariants f and U given by:

f ¼ k~f k; U ¼ E þ
1

mv
ð~p £ ~fÞ;

where the wave-particle duality and the relation c ¼ vr have been used.
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Let f 1 ¼ f cosf ; f 2 ¼ f sinf. The inverse of the restriction of the Kirillov form on the coadjoint orbit

in the basis ðJ; F 1; P1; P2Þ is

V21 ¼
1

mvf sinf

0 2mv 0 0

mv 0 p1 p2

0 2p1 0 2f sinf

0 2p2 f sinf 0

0
BBBBB@

1
CCCCCA:

The symplectic form on the orbit is then

s ¼ dj ^ dfþ dp ^ dqþ
p

mv
dp ^ dfþmvq dq ^ df; ð13Þ

where p1 and q are given by (7).

The invariant U can be written as U ¼ E þ vðp sinfþmv q cosfÞ where v ¼ f =mv is a velocity.

The Poisson bracket of two functions g1 and g2 corresponding to the symplectic form (13) is given by

{g1; g2} ¼
›g1

›p

›g2

›q
2

›g1

›q

›g2

›p
þ

›g1

›j

›g2

›f
2

›g1

›f

›g2

›j

þmvq
›g1

›j

›g2

›p
2

›g1

›p

›g2

›j

� �
2

p

mv

›g1

›j

›g2

›q
2

›g1

›q

›g2

›j

� �
:

We then have the following non trivial Poisson brackets within the coordinates on the maximal

coadjoint orbit:

{j; p} ¼ mv q; {f; q} ¼ 0 ð14Þ

{j;f} ¼ 1; {p; q} ¼ 1 ð15Þ

{j; q} ¼ 2
p

mv
; {f; p} ¼ 0: ð16Þ

The relations (14) mean that momenta ðj; pÞ do not commute but the configurations coordinates ðf; qÞ

commute, the relations (15) mean that j is conjugated to f and that p is conjugated to q, the relations

(16) mean that j do not commute with q while p commute with f.

Let the symplectic realization of the extended Aristotle Lie group on its coadjoint orbit be given by

ðj0;f0; p0; q0Þ ¼ Lðu;h 1;h 2;x 1 ;x 2;t Þðj;f; p; qÞ. By using relations (11) to (12), we obtain

j0 ¼ j þ pðsin u x 1 2 cos u x 2Þ2mv qðcos u x 1 þ sin u x 2Þ þ ~h £ RðuÞ~f2mv ~x2

p0 ¼ cos u pþmv sin u q2mvx 2; q 0 ¼ 2
1

mv
sin u pþ cos u qþ x 1; f0 ¼ fþ u:

It follows that Lð0;0;0;0;0;t Þðj;f; p; qÞ ¼ ðj;f; p; qÞ meaning that all the coordinates j;f; p and q on the

maximal coadjoint orbit are constant with respect to the time t. To overcome this situation, let us

consider the central extension of the noncentrally extended Aristotle group.

But first note also that the symplectic form (13) can be written in the canonical way as

s ¼ dH ^ dtþ dp ^ dq;

where H ¼ jvþ ðp2=2mÞ þ ðmv2 q 2=2Þ is an energy while t ¼ a=v is a time.

3.2 Central extension of the noncentrally extended Aristotle group

Consider the central extension of the Lie algebra defined by (10) satisfying the non trivial Lie brackets

½ J; Pj� ¼ Pi1
i
j; ½Pi; Pj� ¼

1

r 2
S1ij ð17Þ

½ J; F j� ¼ F i1
i
j; ½Pi;H� ¼ F i; ½Pi; F j� ¼ Kdij:
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We recover the Lie algebra defined by (2) when F i ¼ 0, K ¼ 0 and S ¼ 0, the Lie algebra defined by (4)

when F i ¼ 0, K ¼ 0 and the Lie algebra defined by (10) when K ¼ 0. Consider now the general Lie

algebra defined by (17).

Let ĝ ¼ expðwS þ gKÞexpðtHÞexpð ~h~Fþ ~x~PÞexpðuJÞ be the general element of the corresponding

connected extended Aristotle group. By identifying ĝ with ðw; g; t; ~h; ~x; uÞ the multiplication law

ĝ00 ¼ ĝĝ0 is such that

w 00 ¼ w0 þ
1

2r 2
~x £ Rð2uÞ~x0 þ w; u00 ¼ u0 þ u; t 00 ¼ t þ t 0;

g 00 ¼ g 0 þ
1

2
~x:RðuÞ ~h0 2

1

2
ð ~hþ ~xt 0Þ:RðuÞ~x0 þ g;

~h00 ¼ RðuÞ ~h0 þ ~hþ ~xt 0; ~x00 ¼ RðuÞ~x0 þ ~x:

It follows that the adjoint action of the extended Aristotle group on its Lie algebra is such that

dg 0 ¼ dgþ ~x £ RðuÞd ~h2 ~h £ RðuÞd~x2 ~h £ ~xduþ
1

2
~x2 dt

d ~h 0 ¼ RðuÞd ~hþ 1ð ~h2 ~xtÞdu2 tRðuÞd~xþ ~xdt

dw 0 ¼ dwþ
1

r 2
Rð2uÞ~x £ d~x2

~x2

2r 2
du

d~x 0 ¼ RðuÞd~xþ 1ð~xÞdu; dt 0 ¼ dt; du0 ¼ du;

where 1ð ~x Þ is given by the relation (5).

If the duality between the extended Lie algebra and its dual Lie algebra gives rise to the action

jduþ ~f:d ~hþ ~p:d~xþ hdwþ Edt þ kdg, then the coadjoint action is such that

h 0 ¼ h; k 0 ¼ k ð18Þ

and

~p 0 ¼ RðuÞ~pþ RðuÞ~ft þ kð ~h2 ~xtÞ þ
h

r 2
1ð~xÞ; ~f 0 ¼ RðuÞ~f2 k~x ð19Þ

j 0 ¼ j þ ~x £ RðuÞ~pþ ~h £ RðuÞ~f2
h

2r 2
~x2

E 0 ¼ E 2 ~x:RðuÞ~fþ
1

2
k~x2;

where ~p is a linear momentum, h is an action, ~f is a force, k is Hooke’s constant, E is an energy and j is

an angular momentum.

The coadjoint orbit is, in this case, characterized by the two trivial invariants h and k (18), and by the

nontrivial invariants s and U given by:

s ¼ j2 ~p £ ~qþ
1

2
mv~q2; U ¼ E 2

1

2
k~q2;

where

~q ¼ 2
~f

k
: ð20Þ

We see that the coadjoint orbit is four-dimensional. Let us denote it by Oðh;k;s;UÞ.
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The restriction V ¼ ðVabÞ of the Kirillov form to the orbit is then

V ¼

0 mv k 0

2mv 0 0 k

2k 0 0 0

0 2k 0 0

0
BBBBB@

1
CCCCCA:

The modified symplectic form is explicitly given by

s ¼ dpi ^ dq i þ
1

2
mv1 ijdq i ^ dqj;

where ~q is given by relation (20).

If ðyaÞ ¼ ðp1; p2; q
1; q2Þ, the Poisson brackets are then explicitly given by

{H; g} ¼
›H

›pi

›g

›q i
2

›H

›q i

›g

›pi
þ F ij

›H

›pi

›g

›pj
;

where

F ij ¼ 2mv1ij:

This implies that

{pi; pj} ¼ F ij; {pi; q
j} ¼ d

j
i; {q

i; q j} ¼ 0:

Let the symplectic realization of the extended Aristotle Lie group on its coadjoint orbit be given by

ð~p0; ~q0Þ ¼ Lðu; ~h;~x;t Þð~p; ~qÞ. By using relations (19), we have

~p0 ¼ RðuÞ~p2 k½ðRðuÞ~qþ ~xÞt 2 ~h� þ h1ð~xÞ; ~q0 ¼ RðuÞ~qþ ~x:

It follows that (~pðtÞ; ~qðtÞÞ ¼ Dð0;0;0;0;0;t Þð~p; ~qÞ gives rise to

~pðtÞ ¼ ~p2 k~qt; ~qðtÞ ¼ ~q:

The equations of motion are then

d~p

dt
¼ 2k~q;

d~q

dt
¼ 0:

So with the central extension of the noncentrally extended of the two-dimensional Aristotle group,

we have realized a phase space where momenta do not commute and this noncommutativity is due to

presence of the magnetic field

F ij ¼ 2mv1ij ¼ 2eB1ij: ð21Þ

Moreover, this phase space (the orbit) describes a spring submitted to a Hooke’s force (~F ¼ 2k~q)

which does not change the elongation in time.

4. CONCLUSION

In this paper, we have proved that one can not construct noncommutative phase spaces by the

coadjoint orbit method with the first and the second central extensions of the two-dimensional

Aristotle group because symplectic structures obtained are canonical. But by considering the

noncentrally extended Aristotle group and its corresponding central extension, we have realized

partially noncommutative phase spaces (only momenta do not commute). In the first case, all the

phase space coordinates do not depend on the time. To overcome this situation, we have considered

the central extension of the above noncentrally extended Aristotle group. The phase space obtained in

the latter case describes a spring submitted to a Hooke’s force (~F ¼ 2k~q) which does not change the

elongation in time. Furthermore, the noncommutativity of momenta is measured by a term which is
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associated to the naturally introduced magnetic field (21). Moreover, this case corresponds to the

minimal coupling of the momentum with the magnetic potential.12
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