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ABSTRACT

This paper shows the combination of an efficient transformation and Exp-function method, to construct

generalized solitary wave solutions of the nonlinear Burger’s equations of fractional-order.

Computational work and subsequent numerical results re-confirm the efficiency of the proposed

algorithm. It is observed that the suggested scheme is highly reliable and may be extended to other

nonlinear differential equations of fractional order.
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1. INTRODUCTION

The subject of factional calculus1,2 is a rapidly growing field of research, at the interface between chaos,

probability, differential equations, and mathematical physics. In recent years, nonlinear fractional

differential Equations (NFDEs) have gained much interest due to the exact description of nonlinear

phenomena of many real-time problems. Fractional calculus is also considered as a novel topic,3,4 it has

recently gained considerable popularity and importance. Fractional calculus has been the subject of

specialized conferences, workshops and treatises or so, mainly due to its demonstrated applications in

numerous and diverse fields of science and engineering. Some of the present-day applications of

fractional models5–8 include fluid flow, solute transport or dynamical processes in self-similar and

porous structures, diffusive transport akin to diffusion, material viscoelastic theory, electromagnetic

theory, dynamics of earthquakes, control theory of dynamical systems, optics and signal processing,

biosciences, economics, geology, astrophysics, probability and statistics, chemical physics, and so on.

As a consequence, there has been an intensive development of the theory of fractional differential

equations.1–8 Recently, He and Wu,9 developed a very efficient technique called Exp-function method,

for solving various nonlinear physical problems. The literature reveals that Exp-function method has

been applied to a wide range of differential equations and is highly reliable. The Exp-function method

has been extremely useful for diversified nonlinear problems of physical nature and has the potential to

cope with the versatility of the complex nonlinearities of the problems. Subsequent works have shown

the complete reliability and efficiency of this algorithm. He et al.10– 11 used this scheme to find periodic

solutions of evolution equations; Mohyud-Din12–15 extended the same for nonlinear physical problems,

including higher-order BVPs; Oziz16 tried this novel approach for Fisher’s equation; Wu et al.17,18 for the

extension of solitary, periodic and compacton-like solutions; Yusufoglu19 for MBBN equations; Zhang20

for high-dimensional nonlinear evolutions; Zhu21,22 for the Hybrid-Lattice system and discrete m KdV

lattice; Kudryashov23 for exact soliton solutions of the generalized evolution equation of wave

dynamics; Momani24 for an explicit and numerical solutions of the fractional KdV equation.

The motivation for this paper is the development of an efficient combination comprising an

efficient transformation, Exp-function method using Jumarie’s derivative approach,25–28 and its

subsequent application to construct generalized solitary wave solutions of the nonlinear Burger’s

Equations of fractional-order.29–30 It is worth mentioning that Ebaid 31 proved that c ¼ d and p ¼ q are

the only relations that can be obtained by applying exp-function method to any nonlinear ordinary

differential equation. It is to be noted that fractional Burger’s equations32–36 describe the physical

processes of unidirectional propagation of weakly nonlinear acoustic waves through a gas-filled pipe.

The fractional derivative results from the memory effect of the wall friction through the boundary layer.

The same form can be found in other systems such as shallow-water waves and waves in bubbly liquids.

Generally, a boundary layer will give rise to memory effects in the form of this fractional derivative.

Moreover, such equations are of utmost importance in mathematical physics and engineering sciences.

Hence these appear quite often in a number of scientific models, including fluid mechanics, astrophysics,

solid state physics, plasma physics, chemical kinematics, chemical chemistry, optical fiber and

geochemistry.11,13,34–38

Theorem 1.1:31 Suppose that u ðrÞ and ug are the highest order linear term and the highest

order nonlinear term of a nonlinear ODE, respectively, where r and g are both positive integers.

Then the balancing procedure using the Exp-function ansatz; UðhÞ ¼

Pd

n¼2c
an exp ðnhÞPq

m¼2p
bm exp ðmhÞ

, leads to

c ¼ d and p ¼ q; ;r; s;V; l $ 1:

Theorem 1.2:31 Suppose that u ðrÞ and u ðsÞuk are the highest order linear term and the highest order

nonlinear term of a nonlinear ODE, respectively, where r; s and V are all positive integers. Then the

balancing procedure using the Exp-function ansatz leads to c ¼ d and p ¼ q; ;r; s; k $ 1.

Theorem 1.3:31 Suppose that u ðrÞ and ðu ðsÞÞV are the highest order linear term and the highest order

nonlinear term of a nonlinear ODE, respectively, where r; s and V are all positive integers. Then the

balancing procedure using the Exp-function ansatz leads to c ¼ d and p ¼ q; ;r; s $ 1;;V $ 2.
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Theorem 1.4:31 Suppose that u(r) and ðu ðsÞÞVul are the highest order linear term and the highest order

nonlinear term of a nonlinear ODE, respectively, where r; s;V and l are all positive integers. Then the

balancing procedure using the Exp-function ansatz leads to c ¼ d and p ¼ q; ;r; s;V; l $ 1.

2. JUMARIE’S FRACTIONAL DERIVATIVE

Jumarie’s fractional derivative is a mo1dified Riemann-Liouville derivative defined as;

Da
t f xð Þ ¼

1
G 2að Þ

Ð x
0 x 2 tð Þ2a21 f tð Þ2 f 0ð Þ

� �
dt;a # 0;

1
G 2að Þ

d
dx

Ð x
0 x 2 tð Þ2a f tð Þ2 f 0ð Þ

� �
dt;0 # a # 1

f a2n
�

xð Þn
�n
; n # a # nþ 1; n $ 1

8>>><
>>>:

9>>>=
>>>;

ð1Þ

Where f : R! R; x ! f ðxÞ denotes a continuous (but not necessarily differentiable) function.

Some useful formulas and results of Jumarie’s modified Riemann–Liouville derivative are

summarised in the references25–28.

Da
x c ¼ 0;a $ 0; c ¼ constant ð2Þ

Da
x cf xð Þ�
�

¼ cDa
x f xð Þa $ 0; c ¼ constant ð3Þ

Da
x x

b ¼
G 1þ b
� �

G 1þ b2 a
� � x b2a;b $ a $ 0: ð4Þ

Da
x f xð Þg xð Þ

��
¼ Da

x f xð Þg xð Þ þ f xð Þ Da
x g xð Þ

�
:

��
ð5Þ

Da
x f x tð Þð Þ ¼ f

0

x xð Þ:x a tð Þ: ð6Þ

3. EXP-FUNCTION METHOD11,14,38,39

We consider the general nonlinear FPDE of the type

Pðu; ut ; ux ; uxxuxxx ; . . . ;D
a
t u;D

a
x u;D

a
xxu; . . . Þ ¼ 0; 0 , a # 1; ð7Þ

where Da
t u;D

a
x u;D

a
xxu are the modified Riemann-Liouville derivative of u with respect to t; x; xx

respectively.

Using a transformation39

h ¼ kx þmy þ
vt a

G 1þ að Þ
þ h0; k;v;m;h0 are all constantswith k;v;– 0 ð8Þ

we can rewrite equation (7) in the following nonlinear ODE;

Qðu; u0; u00; u
000

; u ivÞ ¼ 0; ð9Þ

where the prime denotes derivative with respect to h.

According to Exp-function method, we assume that the wave solution can be expressed in the

following form

u h
� �

¼

Pd
n2can exp nh

� �
Pq

m2pbm exp mh
� � ð10Þ

where p; q; c and d are positive integers which are known to be further determined, an and bm
are unknown constants. We can rewrite Eq. (4) in the following equivalent form

u h
� �

¼
ac exp ch

� �
þ . . . þ a2d exp 2dh

� �
bp exp ph

� �
þ . . . þ b2q exp 2qh

� � : ð11Þ

Page 3 of 8

Ul Hassan and Mohyud-Din. QScience Connect 2013:19



This equivalent formulation plays an important and fundamental part for finding the analytic solution

of problems. To determine the value of c and p by using31,

p ¼ c; q ¼ d: ð12Þ

4. NUMERICAL APPLICATIONS

In this section, we apply Exp-function method to construct generalized solitary solutions for Burger’s

Equations of fractional-order. The numerical results are very encouraging.

Example 4.1: Consider the following Burger’s Equation of fractional order

Da
t uþ uux ¼ uxx ; 0 , a # 1: ð13Þ

Using (8) equation (13) can be converted to an ordinary differential equation

vu0 þ kuu0 ¼ k 2u00; ð14Þ

where the prime denotes the derivative with respect to h. The solution of the equation (13) can be

expressed in the form, equation (11). To determine the value of c andp, by using31,

p ¼ c; q ¼ d: ð15Þ

Case 4.1.I:We can freely choose the values of c and d, but we will illustrate that the final solution does

not strongly depend upon the choice of values of cand d. For simplicity, we set p ¼ c ¼ 1and

q ¼ d ¼ 1 equation (11) reduces to

u h
� �

¼
a1 exp h

� �
þ a0 þ a21 exp 2h

� �
b1 exp h

� �
þ a0 þ b21 exp 2h

� � : ð16Þ

Substituting equation (16) into equation (14), we have

1

A

c4exp 4h
� �

¼c3exp 3h
� �

þc2exp 2h
� �

þc1exp h
� �

þc0þc21exp 2h
� �

þc22exp 22h
� �

þc23exp 23h
� �

þc24exp 24h
� �

2
4

3
5¼0; ð17Þ

where A ¼ b1 exp h
� �

þ b0 þ b21 exp 2h
� �� �4

,ci are constants obtained by Maple 16. Equating the

coefficients of exp nh
� �

to be zero, we obtain

c24 ¼ 0; c23 ¼ 0; c22 ¼ 0; c21 ¼ 0; c0 ¼ 0; c1 ¼ 0; c2 ¼ 0; c3 ¼ 0; c4 ¼ 0
� �

: ð18Þ

Solution of (12) will yield

a21 ¼
a1b21

b1
; a0 ¼

a1b0

b1
; a1 ¼ a1; b21 ¼ b21; b0 ¼ b0; b1 ¼ b1

� �
: ð19Þ

We, therefore, obtained the following generalized solitary solution u x; t
� �

of equation (13)(Figure 4.1)

b21 2k
22vð Þe

2xkþvt a

G 1það Þ

k
2 b1 2k 2þvð Þe

xkþvt a

G 1það Þ

k

b21e
2xkþvt a

G 1það Þ þ b1e
xkþvt a

G 1það Þ

8><
>:

9>=
>;: ð20Þ
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Case 4.1.II: If p ¼ c ¼ 2 and q ¼ d ¼ 1, then trial solution equation (13) reduces to

u h
� �

¼
a2 exp 2h

� �
þ a1 exp h

� �
þ a0 þ a21 exp 2h

� �
b2 exp 2h

� �
þ b1 exp h

� �
þ b0 þ b21 exp 2h

� � : ð21Þ

Proceeding as before, we obtain

a21 ¼
a1b21

b1
; a0 ¼

a1b0

b1
; a1 ¼ a1; b21 ¼ b21; b0 ¼ b0; b1 ¼ b1

� �
: ð22Þ

Hence we get the generalized solitary wave solution of Equation (13) for a ¼ 1 as follows

b21 2k
22vð Þe2 xkþvtð Þ

k
2 b1 2k 2þvð Þe xkþvt

k

b21e2 xkþvtð Þ þ b1exkþvt

( )
: ð23Þ

In both cases, for different choices of c, p, d and q, we get the same soliton solutions, which clearly

illustrates that the final solution does not strongly depend upon these parameters.

Figure 4.1. (a), (b), (c) and (d). Soliton solutions of equation (13) for a0 ¼ b1 ¼ b21 ¼ v ¼ 1 and k ¼ 1.
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Example 4.2: Consider the following Burger’s equation of fractional order

Da
t uþ buxx þ 2buux þ d ux þ uy

� �
¼ 0; 0 , a # 1: ð24Þ

Using (8) equation (24) can be converted to an ordinary differential equation

vu0 þ bk 2u00 þ 2buu0 þ d k þmð Þu0 ¼ 0; ð25Þ

where the prime denotes the derivative with respect to h. The solution of the equation (24) can be

expressed in the form, equation (11). To determine the value of c andp, by using31,

p ¼ c; q ¼ d: ð26Þ

Case 4.2.I:We can freely choose the values of c and d, but we illustrate that the final solution does not

strongly depend upon the choice of values of c and d. For simplicity, we set p ¼ c ¼ 1 and q ¼ d ¼ 1

equation (11) reduces to

u h
� �

¼
a1 exp h

� �
þ a0 þ a21 exp 2h

� �
b1 exp h

� �
þ a0 þ b21 exp 2h

� � : ð27Þ

Substituting equation (27) into equation (25), we have

1

A

c4exp 4h
� �

¼c3exp 3h
� �

þc2exp 2h
� �

þc1exp h
� �

þc0þc21exp 2h
� �

þc22exp 22h
� �

þc23exp 23h
� �

þc24exp 24h
� �

2
4

3
5¼0; ð28Þ

where A ¼ b1 exp h
� �

þ b0 þ b21 exp 2h
� �� �4

; ci are constants obtained by Maple 16. Equating the

coefficients of exp nh
� �

to be zero, we obtain

c24 ¼ 0; c23 ¼ 0; c22 ¼ 0; c21 ¼ 0; c0 ¼ 0; c1 ¼ 0; c2 ¼ 0; c3 ¼ 0; c4 ¼ 0
� �

: ð29Þ

Solution of (29) will yield

a0 ¼ 0; a21 ¼ 2 1
2

b21 vþ2bk 2þdkþdmð Þ
bk

;

a1 ¼
1
2

b1 2vþ2bk 22dk2dmð Þ
bk

; b0 ¼ 0;

a1 ¼ a1; b21 ¼ b21; b1 ¼ b1

8>>>><
>>>>:

9>>>>=
>>>>;
: ð30Þ

We, therefore, obtained the following generalized solitary solution u x; t
� �

of equation (24)

(Figure 4.2)

2 1
2

b21 vþ2bk 2þdkþdmð Þ
bk

e2xkþvt a

G 1það Þ þ 1
2

b1 2vþ2bk 22dk2dmð Þ
bk

e
xkþvt a

G 1það Þ

b21e
2xkþvt a

G 1það Þ þ b1e
xkþvt a

G 1það Þ

8><
>:

9>=
>; ð31Þ

Case 4.2.II: If p ¼ c ¼ 2 and q ¼ d ¼ 1, then trial solution equation (24) reduces to

u h
� �

¼
a2 exp 2h

� �
þ a1 exp h

� �
þ a0 þ a21 exp 2h

� �
b2 exp 2h

� �
þ b1 exp h

� �
þ b0 þ b21 exp 2h

� � : ð32Þ
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Proceeding as before, we obtain

a21 ¼ 2 1
2

b21 vþ2bk 2þdkþdmð Þ
bk

;

a1 ¼
1
2

b1 2vþ2bk 22dk2dmð Þ
bk

;

a0 ¼ 0; a1 ¼ a1; b21 ¼ b21; b0 ¼ 0; b1 ¼ b1

8>>>><
>>>>:

9>>>>=
>>>>;
: ð33Þ

Hence we get the generalized solitary wave solution of equation (24) for a ¼ 1 as follows

2 1
2

b21 vþ2bk 2þdkþdmð Þ
bk

e2 xkþvtð Þ þ 1
2

b1 2vþ2bk 22dk2dmð Þ
bk

e xkþvt

b21e2 xkþvtð Þ þ b1exkþvt

8<
:

9=
; ð34Þ

In both cases, for different choices of c, p, d and q, and, we get the same soliton solutions which clearly

illustrates that final solution does not strongly depends upon these parameters.

5. CONCLUSION

In this paper, we applied Exp-function method to construct generalized solitary solutions of the

nonlinear fractional order Burger’s equations. It is observed that the Exp-function method is very

convenient to apply, and is very useful for finding solutions to a wide class of nonlinear problems.

Figure 4.2. (a), (b), (c) and (d). Soliton solutions of equation (24) for b1 ¼ b21 ¼ v ¼¼ b ¼ d ¼ m ¼ 1 and k ¼ 1.
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