OPEN ACCESS

¹Department of Chemistry, Annamalai University, Annamalainagar-608002, India

²Department of Chemistry, National College, Tiruchirappalli-620 001, India *Email: drkgsekar@yahoo.co.in

http://dx.doi.org/ 10.5339/connect.2013.18

Submitted: 30 April 2013 Accepted: 3 June 2013 © 2013 Thirunarayanan, Sekar, licensee Bloomsbury Qatar Foundation Journals. This is an open access article distributed under the terms of the Creative Commons Attribution license CC BY 3.0, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research paper

Synthesis of some substituted pyrazole-1-carbothioamides and spectral correlations in 3-(3,4-dibromophenyl)-5-(substituted phenyl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamides

G. Thirunarayanan¹, K.G. Sekar^{2,*}

ABSTRACT

Background: This study aims to synthesise a series of 1-thiocarbomyl pyrazolines, including 3-(3,4-dibromophenyl)-5-(substituted phenyl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamides, using solvent-free fly-ash:PTS catalyzed cyclization between chalcones and thiosemicarbazide, under microwave irradiation. Then to characterize them using analytical, physical and spectroscopic data. **Methods:** Solvent-free microwave assisted cyclization was adopted for the synthesis of 1-thiocarbomyl, including 3-(3,4-dibromophenyl)-5-(substituted phenyl)-4,5-dihydro-1*H*- pyrazole-1-carbothioamides, using fly-ash:PTS as the catalyst. They were characterised by IR, NMR and mass spectroscopic data. The infrared (IR) and nuclear magnetic resonance (NMR) spectral data was correlated with substituent constants, F and R parameters, using Hammett equation, to study the effect of substituents.

Results: The yields of the synthesised chalcones were more than 85%. The spectral data of these 3-(3,4-dibromophenyl)-5-(substituted phenyl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamides had been correlated, using single and multi-linear regression analysis. These gave a satisfactory or fair degree of correlation with some parameters.

Conclusion: Easy handling, non-hazardous and environmentally benign cyclization method had been adopted for the synthesis of 1-thiocarbomyl pyrazolines using fly-ash:PTS as catalyst, with better yields. Some of the Hammett spectral correlations were found to be satisfactory, with the observed spectroscopic data.

Keywords: 3-(3,4-dibromophenyl)-5-(substituted phenyl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamides, fly-ash:PTS, solvent-free synthesis, Hammett correlations

Cite this article as: Thirunarayanan G, Sekar KG. Synthesis of some substituted pyrazole-1-carbothioamides and spectral correlations in 3-(3,4-dibromophenyl)-5-(substituted phenyl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamides, *Qscience Connect* **2013:18** http://dx.doi.org/10.5339/connect.2013.18

INTRODUCTION

Numerous solvent-free ^{1,2} green synthetic methods have been applied for the stereospecific, stereoselective and regioselective synthesis of organic compounds. These solvent free reactions, involving the formation of carbon-carbon bond and carbon-heteroatom bond, are important and interesting in green synthesis. Among the five membered nitrogen heterocyclics, the 1-thiocarbomyl pyrazoline derivatives are important compounds and they possess -CS-NH₂ group in N₁ atom of pyrazoline ring.^{3,4} These 1-thiocarbomyl pyrazoline derivatives have many important biological activities such as, anti-bacterial,⁵ anti-fungal,⁵ anti-depressant,⁶ anti-convulsant,⁷ anti-inflammatory,⁸ anti-tumour,⁹ anaesthetic,¹⁰ analgesic,¹¹ anti-cancer,¹² MAO-B inhibitors,¹³ steroidal, nitric oxide synthase inhibitor, anti-viral and cannabinoid CBI receptor antagonists,⁸ Many solvent-free and conventional synthetic methods are reported in literature for the synthesis of thiocarbomyl pyrazoline derivatives.^{3,12,14-17} In these methods, many 1-thiocarbomyl pyrazoline derivatives were synthesised by cyclization of chalcones with hydrazine hydrate,¹⁸ phenylhydrazine¹⁹ or phenyl hydrazine hydrochloride.²⁰⁻²² Similarly, 1-thiocarbomyl pyrazoline derivatives were synthesised by cyclization of chalcones with thiosemicarbazide,^{3,12,13,23} substituted thiosemicarbazide^{3,8,13} or hydrazenidium dithiocyanate.²⁴ At present, synthetic organic chemists, scientists and researchers prefer greener synthesis, due to easy working procedure, shorter reaction time, higher yields, it is less hazardousness and solvent usage.^{25–30} Based on the above advantages, the greener synthetic methods, such as solvent-free microwave irradiation and ultrasonication, were used for the synthesis of thiocarbomyl pyrazoline derivatives.^{22,31,32} A number of catalysts were utilized for the synthesis of 1-thiocarbomyl pyrazoline derivatives, such as Lewis acids, bases and their salts,^{12,31,32} CH₃COOH/CH₃COONa,³ NaOH/EtOH,^{23,31,33} KOH/EtOH,^{19,32} neat reaction in ethanol^{3,13} and basic alumina/ K₂CO₃.^{34,35} These thiocarbomyl pyrazolines are used as starting materials for the synthesis of thiazole substituted pyrazoles.¹⁷ Chawla et al.³⁴ have synthesised more than 80% yield of some 3-substituted phenyl-5-substitutedphenyl-4,5-dihydropyrazole-1-carbothioamides by the microwave irradiation method, and evaluated their antimicrobial activities. The same yield of 5-(1,3-benzodioxol-yl)-3-(substituted)phenyl-4,5-dihydro-1H-pyrazol-1-carbothioamides have been synthesised by the microwave method, and their anticarcinogenic activities studied.¹² Ashok co-workers have synthesised 80% yields of some 3-(3-benzoyl-6-hydroxy-3-methylbenzo[b]furon-5-yl)-5-(aryl)-4, 5-dihydro-1H-pyrazole carbothioamides using microwave irradiation technique and studied their antibacterial activities.^{14–16} Patel and Desai³⁵ have synthesised 60–85% yields of 1-thiocarbomyl-2-(2,4-dichloro-5-fluorophenyl)-5-(substitutedphenyl)-pyrazoline derivatives using a microwave, with alumina/ K_2CO_3 as the catalyst. Spectroscopic data is useful for predicting the ground state equilibrium of organic compounds. The ultraviolet spectroscopic data, of absorption maxima (λ max, nm), is also applied to predict the effect of substituents.³⁰ In pyrazoline molecules (¹H pyrazoles), the infrared spectra is used for predicting the effects of substituents on the vibrations of C=N, C-H, N-H.²⁰ From NMR spectroscopy, the spatial arrangements of the protons H_a , H_b and H_c , or H_a , H_b , H_c and H_d of the types shown in Figure 1, were predictable by their frequencies with multiplicities viz., doublet or triplet, or doublet of doublets. Based on the geometry, the chemical shift of the protons of respective pyrazoles has been assigned, and the effects of substituent will be studied. The effects of substituent on the 2-naphthyl based pyrazoline ring protons were first studied by Sakthinathan et al.²⁰ They assigned infrared $\nu C = N(cm^{-1})$, NMR chemical shifts (δ , ppm) of H_a, H_b, H_c, C = N values and correlated with Hammett substituents. In these correlations they observed satisfactory r values. Recently, Thirunarayanan et al.²² have studied the solvent- free synthesis, spectral correlations of some

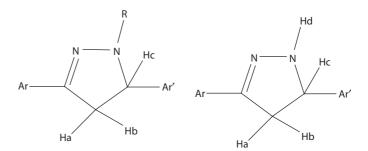
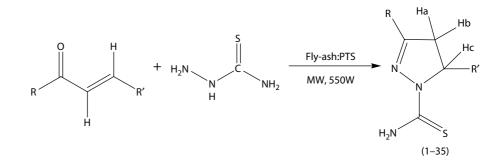


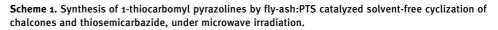
Figure 1. General structure of 1H-pyrazoles.

1-phenyl-3-(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines. The literature reveals that there is no information available for solvent-free synthesis of some thiocarbomyl pyrazolines, including 1-thiocarbomyl-2-(3,4-dibromophenyl)-5-(substituted phenyl)-pyrazoline derivatives by cyclization of the respective chalcones and thiosemicarbazide in presence of solid fly-ash: PTS catalyst. Therefore, the authors have taken efforts to synthesize some thiocarbomyl pyrazolines, including 1-thiocarbomyl-2-(3,4-dibromophenyl)-5-(substituted phenyl)-pyrazoline derivatives, by solvent-free microwave assisted cyclization of chalcones and thiosemicarbazide, in presence of fly-ash:PTS. The purities of these pyrazolines were assessed using their physical constants and spectral data, published in earlier literature. The infrared and NMR spectra of these synthesized 3-(3,4-dibromophenyl)-5- (substituted phenyl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamides were recorded to study the Hammett spectral correlations.

METHODS

General

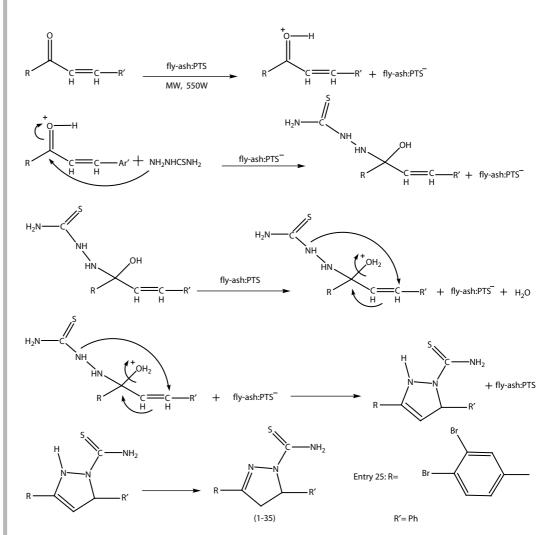

All chemicals used were procured from Sigma-Aldrich and E-Merck. Melting points of all pyrazoles have been determined in open glass capillaries on Mettler FP51 melting point apparatus and are uncorrected. Infrared spectra (KBr, 4000–400 cm⁻¹) have been recorded on BRUKER (Thermo Nicolet) Fourier transform spectrophotometer. The NMR spectra of all pyrazolines have been recorded on Bruker AV400 spectrometer, operating at 400 MHz for recording ¹H and 100 MHz for ¹³C spectra in CDCl₃ solvent, using TMS as internal standard. Mass spectra have been recorded on SHIMADZU spectrometer, using chemical ionization technique.


Preparation of fly-ash:PTS catalyst

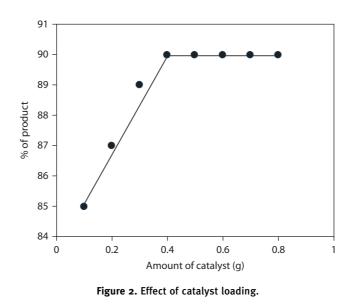
The fly-ash:PTS catalyst was prepared by adopting the method from literature.³⁶ In a 50 mL Borosil beaker, 1g of fly-ash and 0.8 mL (0.5 mol) of 4-methylbenzenesulphonic acid were taken and mixed thoroughly with glass rod. This mixture was heated on a hot air oven at 85°C for 1 h, cooled to room temperature, stored in a Borosil bottle and tightly capped. This was characterized by infrared spectra and SEM analysis.

Synthesis of substituted pyrazole-1-carbothioamide derivatives

Appropriate equi-molar quantities of chalcones (2 mmol), thiosemicarbazide (2 mmol) and fly-ash:PTS (0.5 g) were taken in 50 mL borosil glass tubes. The mixture was subjected to microwave irradiation for 4-6 min in a microwave at 550 watts, 2540 MHz frequency, 140°C and atmospheric pressure in a microwave oven (Scheme 1) (Samsung Grill, GW73BD Microwave oven, 230 V A/c, 50 Hz, 2450 Hz, 100-750 W (IEC-705). Depending on the nature of the substituent present in the chalcones, it was assigned various time intervals 4 min, 5.5 min and 6 min, for halogen and nitro substituents,



respectively. The completion of the reaction was monitored by TLC. After completion, the reaction mixture was cooled to room temperature. The product was isolated by adding 10 mL of dichloromethane and evaporation. The solid, on recrystallization from benzene-hexane mixture, afforded the glittering product. The insoluble catalyst has been recycled by washing with ethyl acetate (8 mL), followed by drying in an oven at 100°C for 1 h and reused for further reactions.


RESULTS AND DISCUSSION

Attempts have been made to synthesize substituted pyrazoline carbothioamide derivatives by cyclization of various aryl chalcones and thiosemicarbazide, in the presence of acidic catalyst fly-ash:PTS under microwave irradiation. Hence, we have synthesized the substituted 1-thiocarbomyl pyrazoline derivatives by the cyclization of 2 mmol of chalcone, 2 mmol of thiosemicarbazide, under microwave irradiation, with 0.5 g of fly-ash:PTS catalyst at 550 W, 4-6 min (Samsung Grill, GW73BD Microwave oven, 230 V A/c, 50 Hz, 2450 Hz, 100-750 W (IEC-705), (Scheme 1). During the course of this reaction, fly-ash:PTS catalyses cyclization between chalcones and thiosemicarbazide by the elimination of water, followed by proton transfer, gave the 1-thiocarbomyl pyrazolines. The yields of the pyrazolines in this reaction are more than 85%. The proposed general mechanism of this reaction is shown in (Scheme 2). The chalcones containing electron donating substituent $(-OCH_3)$ gave higher yields than electron-withdrawing halogens and $-NO_2$ substituents. Further, we have investigated this cyclization reaction with equimolar quantities of the styryl 3,4-dibromophenyl ketone (entry 25) and thiosemicarbazide, under the same condition as above. In this reaction the obtained yield was 90%. The effect of a catalyst on this reaction was studied by varying the catalyst quantity from 0.1 g to 1 g. As the catalyst quantity is increased from 0.1 g to 1 g, the percentage yield of product is increased from 85% to 90%. Further increase in the catalyst amount beyond 0.4g, saw no significant increase in the percentage product yield. The effect of catalyst loading is shown in (Figure 2). The optimum quantity of catalyst loading was found to be 0.4 g. The results, analytical and mass spectral data are summarized

Scheme 2. The proposed mechanism for the synthesis of 1-thiocarbomyl pyrazolines by fly-ash:PTS catalyzed solvent-free cyclization of chalcones and thiosemicarbazide, under microwave irradiation.

in Table 1. The reusability of this catalyst was studied for the cyclization of styryl 3,4-dibromophenyl ketone and thiosemicarbazide (entry 25), and is presented in Table 2. From Table 2, the first two runs give 90% product yield. The third, fourth and fifth runs give product yields of 89.5%, 89.5% and 89%, respectively, of 1-thiocarbomyl pyrazolines. No appreciable loss in its catalytic activity were observed, up to the fifth run. The effect of solvents on the yield was also studied with methanol, ethanol, dichloromethane and tetrahydrofuran, from each component of the catalyst (entry 25). Similarly, the effect of microwave irradiation was studied on the each component of the catalyst. The effect of solvents on the yields of 1-thiocarbomyl pyrazolines was presented in Table 3. From the table, the highest yield of 1-thiocarbomyl pyrazolines is obtained from the cyclization of chalcone and thiosemicarbazide, with the catalyst fly-ash:PTS, in microwave irradiation.

IR spectral study

The synthesis of 1-thiocarbomyl pyrazoline derivatives are shown in Scheme 1. In the present study, a series of 1-thiocarbomyl pyrazoline derivatives, namely 3-(3,4-dibromophenyl)-5-(substituted phenyl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamides (entries 25–35), were chosen to study the effects of substituent on the spectral data. The infrared ν C==N, NH and C==S stretching frequencies (cm⁻¹) of these 1-thiocarbomyl pyrazolines (entries 25–35) have been assigned and are presented in Table 4. This data is correlated^{20,22,27–30,36,38–42} with Hammett substituent constants and Swain-Lupton's⁴³ parameters. In this correlation the structure parameter Hammett equation employed is as shown in Equation (1).

ν

$$= \rho \sigma + \nu_0 \tag{1}$$

where ν_{o} is the frequency for the parent member of the series.

The observed νC =N stretching frequencies (cm⁻¹) of these 1-thiocarbomyl pyrazolines are correlated with various Hammett substituent constants, and F and R parameters, through single and multi-regression analyses including Swain-Lupton's⁴³ parameters. The results of statistical analyses of single parameter correlations are shown in Table 5. The correlation of νC =N (cm⁻¹) frequencies of 1-thiocarbomyl pyrazolines with Hammett σ , σ^+ and σ_1 constants were satisfactory, excluding H, 4-OH and 4-CH₃ substituents. If these substituents are included in the regression, they reduced the correlation considerably. The σ_R constant, F and R parameters gave poor correlation. A satisfactory correlation was obtained for νC =S (cm⁻¹) frequencies of pyrazolines with Hammett σ_R substituent constants R parameters, excluding 4-F and 4-OH substituents. All correlations gave positive ρ values. This may mean that the normal substituent effect operates in all thiocarbomyl pyrazolines.

and thio	semicarbazide reaction (and thiosemicarbazide reaction of the type under microwave irradiation.	ave irradiation.				
Entry	R	R	Product	M.W.	Yield	m.p. (°C)	Mass (m/z)
						R Ha Hh	
		0=	т—	v	Fly-ash:PTS	H	
		- r	+ H ₂ N R' H	NH ₂	MW, 550W	X X	
		— I			-	H ₂ N ⁻ S	
1	CH ₃	C ₆ H ₅	C ₁₁ H ₁₃ N ₃ S	219	85	273-274	219[M ⁺]
2	CH ₃	$4-0$ CH $_{3}$ C $_{6}$ H $_{4}$	$C_{12}H_{15}N_3OS$	249	90	2/3 182-183 60.24	249[M ⁺]
с С	CH ₃	4-N(CH ₃) ₂ C ₆ H ₄	$C_{13}H_{18}N_4S$	263	86	162 · 238 – 239	263[M ⁺]
4	CH ₃	C ₄ H ₃ O(2-Furyl)	$C_9H_{15}N_3OS$	213	88	238 ' 221–222	213[M ⁺]
5	CH ₃	C ₄ H ₃ S(2-Thienyl)	$C_9H_{15}N_3S_2$	229	87	220-222 119-220	213[M ⁺]
9	$C_4H_3S(2-Thienyl)$	C ₆ H ₅	$C_{14}H_{17}N_3S_2$	291	86	164-165	291[M ⁺]
7	$C_4H_3S(2-Thienyl)$	4-BrC ₆ H ₄	$C_{14}H_{16}BrN_3S_2$	370	87	100 - 105 254 - 255 250 - 255 ³¹	37o[M ⁺], 372[M ²⁺],

Page 6 of 16 Thirunarayanan and Sekar. Qscience Connect 2013:18

381[M ⁺],	330[M ⁺],	350[M ⁺], 352[M ²⁺]	368[M ⁺], 370[M ²⁺], 372[M ⁺⁴]	402[M ⁺], 404[M ²⁺], 408[M ⁺⁴], 410[M ⁺⁶]	323[M ⁺], 325[M ²⁺], 327[M ⁴⁺]	381[M ⁺], 383[M ²⁺]	311[M ⁺]	315[M ⁺], 317[M ²⁺]	326[M ⁺]	360[M ⁺], 362[M ²⁺],	350[M ⁺], 352[M ²⁺], 354[M ²⁺⁴],	337[M ⁺], 396[M ²⁺]	327[M ⁺], 329[M ²⁺]	354[M ⁺]	271[M ⁺]	293[M ⁺]	439[M ⁺], 441[M ²⁺], 443[M ⁴⁺]
214 - 215 $210 - 215^{31}$	174 - 175	1/0-1/5 220-221 242 -223	21/ - 220 ⁻ 165 - 166 26 - 35	145 - 146	212 - 213	211-213 ⁻ 210-211 200.220 ²³	209-210 - 162-163	100 - 102 - 1 123 - 124	122 - 123 129 - 130	$126 - 130^{-1}$ 127 - 128	148 - 149	14/ - 140 ⁻ 150 - 151 160 - 1534	140 - 150 - 226 225 - 226 200 - 201 ²³	223-225 203-204 202 202 ²³	202-203 - 177 - 178 2.6	1/0 - 1/7 164 - 165	103-104 132-133
91	88	89	94	90	88	93	86	85	85	92	86	87	90	89	92	92	90
381	330	350	368	402	323	381	311	315	326	345	350	237	327	354	271	293	439
$C_{17}H_{23}N_3O_3S_2$	$C_{16}H_{18}N_4S_2$	$C_{16}H_{13}Cl_2N_3S$	$C_{16}H_{12}Cl_2FN_3S$	$C_{16}H_{11}Cl_3FN_3S$	$C_{16}H_{12}Cl_3N_3S$	$C_{17}H_{17}Cl_2FN_3S$	$C_{17}H_{17}N_3OS$	$C_{16}H_{14}CIN_3S$	$C_{16}H_{14}N_4O_2S$	$C_{17}H_{16}CIN_3OS$	$C_{16}H_{13}Cl_2N_3S$	$C_{16}H_{13}CIN_4O_3S$	$C_{18}H_{18}FN_3S$	$C_{18}H_{18}N_4O_2S$	$C_{14}H_{13}N_{3}OS$	$C_{12}H_{11}N_3O_2S$	$C_{16}H_{13}Br_2N_3S$
2,4,5-(0CH ₃) ₃ C ₆ H ₂	4-N(CH ₃) ₂ C ₆ H ₄	2,4-Cl ₂ -C ₆ H ₃	C ₆ H ₅	2-ClC ₆ H ₄	4-CIC ₆ H ₄	4-0CH ₃ C ₆ H ₄	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	4-CIC ₆ H ₄	4-CIC ₆ H ₄	4-CIC ₆ H ₄	4-FC ₆ H ₄	$4-NO_2C_6H_4$	C ₆ H ₅	C ₄ H ₃ O(2-Furyl)	$4-C_6H_4$
C ₄ H ₃ S(2-Thienyl)	C ₄ H ₃ S(2-Thienyl)	C ₆ H ₅	2,4-Cl ₂ -5-F-C ₆ H ₂	2,4-Cl ₂ -5-F-C ₆ H ₂	2,4-Cl ₂ -C ₆ H ₃	2,4-Cl ₂ -C ₆ H ₃	$4-0$ CH $_{3}$ C $_{6}$ H $_{4}$	4-CIC ₆ H ₄	$3-NO_2C_6H_4$	4-0CH ₃ C ₆ H ₄	4-CIC ₆ H ₄	$3-NO_2C_6H_4$	2,4-(CH ₃) ₂ -C ₆ H ₃	2,4-(CH ₃) ₂ -C ₆ H ₃	C ₄ H ₃ O(2-Furyl)	C ₄ H ₃ O(2-Furyl)	3,4-Br ₂ -C ₆ H ₃
00	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Entry	Я	R'	Product	M.W.	Yield	m.n. (°C)	Mass (m/z)
(:	:					
26	3,4-Br ₂ -C ₆ H ₃	$2-BrC_6H_4$	$C_{16}H_{12}Br_3N_3S$	519	88	217 - 218	519[M ⁺], 521M ²⁺], 523[M ⁴⁺]
27	3,4-Br ₂ -C ₆ H ₃	$4-BrC_6H_4$	$C_{16}H_{12}Br_3N_3S$	519	88	$214 - 216^{44}$ 240 - 241	519[M ⁺], 521M ²⁺], 523[M ⁴⁺]
28	3,4-Br ₂ -C ₆ H ₃	$2-ClC_6H_4$	$C_{16}H_{12}Br_2CIN_3S$	491	87	239 - 24	491[M ⁺], 493[M ²⁺], 495[M ⁴⁺]
29	3,4-Br ₂ -C ₆ H ₃	4 -ClC ₆ H $_4$	$C_{16}H_{12}Br_2ClN_3S$	491	87	219 - 221 217 - 218	491[M ⁺], 493[M ²⁺], 495[M ⁴⁺]
30	3,4-Br ₂ -C ₆ H ₃	$2-FC_6H_4$	$C_{16}H_{12}Br_2FN_3S$	457	87	216 - 218 237 - 238 227 - 238	457[M ⁺], 459[M ²⁺], 461[M ⁴⁺]
31	3,4-Br ₂ -C ₆ H ₃	$4-FC_6H_4$	$C_{16}H_{12}Br_2FN_3S$	457	87	236 - 237 - 247 - 248	457[M ⁺], 459[M ²⁺], 461[M ⁴⁺]
32	3,4-Br ₂ -C ₆ H ₃	$4-OHC_6H_4$	$C_{16}H_{13}Br_2N_3OS$	455	87	240 - 24/ 222 - 223 222 - 223	455[M ⁺], 457[M ²⁺], 459[M ⁴⁺]
33	3,4-Br ₂ -C ₆ H ₃	4-OCH ₃ C ₆ H ₄	$C_{17}H_{15}Br_2N_3OS$	469	90	221-223 237-238 227 238	469[M ⁺], 471[M ²⁺], 473[M ⁴⁺]
34	3,4-Br ₂ -C ₆ H ₃	4 -CH $_3C_6H_4$	$C_{17}H_{15}Br_2N_3S$	453	89	230-238 - 212-213	453[M ⁺], 455[M ²⁺], 457[M ⁴⁺]
35	3,4-Br ₂ -C ₆ H ₃	$4-NO_2C_6H_4$	$C_{16}H_{12}Br_2N_4O_2S$	485	88	211–212 247–248	361[M ⁺], 363[M ²⁺], 465[M ⁴⁺]

Table 2. Reusability of fly-ash:PTS catalyst, on cyclization of styryl 3,4-dibromo phenyl ketone (2 mmol) and thiosemicarbazide (2 mmol), under microwave irradiation (entry 25).

Run	1	2	3	4	5
Yield	90	90	89.5	89.5	89

Table 3. The effect of solvents in conventional heating and without solvent in microwave irradiation, on yield of 1-thiocarbomyl pyrazoline (entry 25).

					Solv	ents							Nicrowa	Ve
	MeOH	ł		EtOH			DCM			THF			irradiati	
FA	PTS	FAPTS	FA	PTS	FAPTS	FA	PTS	FAPTS	FA	PTS	FAPTS	FA	PTS	FAPTS
73	47	78	74	45	80	73	40	80	75	41	81	78	66	90

MeOH = Methanol; EtOH = Ethanol; DCM = Dichloromethane; THF = Tetrahydrofuran; FA = fly-ash; PTS = para toluene sulphonic acid; FAPTS = fly-ash; PTS

Table 4. The spectroscopic data of 1- thiocarbomyl p	pyrazolines (entries 25–35).	
--	------------------------------	--

		IR(v, cm —	1)		¹³ C NMR(δ,	opm)		¹³ C N	MR(ô,ppm)
Entry	x	C=N	NH	C=S	Ha (dd, 1H)	Hb (<i>dd</i> , 1H)	Hc (dd, 1H)	x	C=N	C=S	x
25	Н	1586	3562	1384	3.071	3.418	5.421	-	163.91	176.47	-
26	2-Br	1582	3559	1381	3.101	3.691	5.314	_	163.94	175.91	_
27	4-Br	1591	3560	1378	3.415	3.891	7.451	-	163.87	175.75	-
28	2-Cl	1597	3537	1378	3.100	3.901	6.344	-	163.79	174.96	-
29	4-Cl	1598	3556	1379	3.235	3.817	6.014	-	162.91	176.29	-
30	2-F	1596	3558	1380	3.106	3.870	5.361	-	163.76	177.94	-
31	4-F	1594	3567	1384	3.247	3.817	5.944	-	161.74	174.17	-
32	4-0H	1592	3559	1382	3.341	3.801	5.967	-	162.65	175.47	-
33	4-0CH3	1580	3551	1376	3.111	3.765	5.901	2.361	160.76	173.12	58.62
34	4-CH ₃	1596	3556	1382	3.141	3.801	5.921	3.654	163.71	176.92	27.98
35	3-N02	1598	3559	1396	3.792	3.912	5.981	-	164.17	177.02	_

Hammett σ_R constant, F and R parameters, gave satisfactory correlation for the vNH stretches(cm⁻¹) of these thiocarbomyl pyrazolines. The remaining Hammett substituent constants have shown poor correlation. The failure in correlation was due to the absence of transmittance of inductive, resonance and field effects of the substituent on the spectral group frequencies, vC=N, C=S and NH (cm⁻¹), and is associated with the resonance-conjugative structure shown in Figure 3. Some of the single parameter correlations of vC=N, C=S and NH (cm⁻¹) frequencies, of 1-thiocarbomylpyrazolines with Hammett substituent constants, F and R parameters, failed. Therefore, it is worthwhile to look at the multi-regression analysis of these frequencies with Swain-Lupton's⁴³ constants. The multi-regressions gave satisfactory correlation with inductive, resonance and field effects of the substituents. The corresponding multi-regression equations are given in (2) – (7).

$$\nu_{CN}(cm^{-1}) = 1589.74(\pm 4.487) + 10.236\sigma_{I}(\pm 4.589) + 7.087\sigma_{R}(\pm 1.020)$$
(2)

$$(R = 0.939, P > 90\%, n = 11)$$

$$\nu_{CN}(cm^{-1}) = 1589.48(\pm 4.146) + 10.615F(\pm 2.576) + 6.566R(\pm 1.754)$$
(3)

$$(R = 0.942, P > 90\%, n = 11)$$

Table 5. Results Hammett σ , σ^+ ,	ts of statistical ana +, տլ տ _R constants,	alysis of infrared , and F and R paı	ed $ u(cm^{-1})$ C $=$ N, C $=$ 9 parameters (entries 2	=S, NH, CF, NMR ch : 25 – 35).	iemical shifts (ð,þ	pm) of Ha,	able 5. Results of statistical analysis of infrared ν (cm 2) C=N, C=S, NH, CF, NMR chemical shifts (δ ,ppm) of Ha, Hb, Hc, C=N and C=S of 1-thiocarbamyl pyrazolines, with Hammett σ , σ^+ , $\sigma_1 \sigma_R$ constants, and F and R parameters (entries 25–35).
Frequency	Constants	r	_	p	S	u	Correlated derivatives
νC=N	a	0.908	1590.85	8.128	6.18	6	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OCH ₃ , 4-NO ₂
	σ +	0.903	1591.54	8.879	6.38	6	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OCH ₃ , 4-NO ₂
	σ_{\parallel}	6.903	1588.35	9.444	6.41	6	4-0H, 4-ÓCH ₃ , 4-NO ₂
	$\sigma_{\rm R}$	0.813	1593.19	5.787	6.66	11	F, 4-OH, 4-OČH ₃ , 4-CH ₃ ,
	Ŀ	0.833	1588.30	8.584	6.38	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	2	0.815	1592.95	3.713	6.69	11	F, 4-OH, 4-OCH ₃ , 4-CH ₃ ,
μNΗ	D	0.805	3556.58	1.212	8.04	11	F, 4-OH, 4-OCH ₃ , 4-CH ₃ ,
	α+	0.804	3556.77	-0.656	8.04	11	F, 4-OH, 4-OCH ₃ , 4-CH ₃ ,
	σ_{\parallel}	0.791	3556.96	-0.644	8.05	11	F, 4-OH, 4-OCH ₃ , 4-CH ₃ ,
	$\sigma_{\rm R}$	0.901	3556.88	5.676	8.00	6	-OCH3, 4-CH3, 4-NO2
	ш	0.901	3554.76	4.719	7.90	6	4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	Ж	0.902	3554.12	-1.967	8.03	6	F, 4-F, 4-ΟΗ, 4-ΟCH ₃ , 4-CH ₃ ,
$\nu C=S$	Ð	0.805	1380.76	8.904	4.73	11	-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ ,
	σ^+	0.813	1381.58	8.436	5.28	11	-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ ,
	$\sigma_{ }$	0.792	1379.75	5.627	5.48	11	F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ ,
	σ_{R}	0.905	1385.45	15.340	4.53	6	F, 4-OCH ₃ , 4-CH ₃ , 4-Ν
	ц.	0.802	1379.87	4.761	5.49	11	:-F, 4-F, 4-ОН,
	2	0.904	1384.83	9.985	4.88	6	:-F, 4-0CH ₃ , 4-CH ₃ , 4-N
δH_a	Ð	0.906	3.193	0406	0.17	10	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-ÕCH ₃ , 4-CH ₃ , 4-NO ₂
	σ^+	706.0	3.234	0.106	0.21	10	-F, 4-F, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	$\sigma_{ }$	0.905	3.061	0.494	0.91	11	-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ ,
	$\sigma_{ m R}$	0.814	3.360	0.504	0.19	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	Ŀ	0.903	3.106	0.329	0.20	10	:-F, 4-F, 4-OCH ₃ , 4-CH ₃
	Ж	0.913	3.325	0.273	0.21	10	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
$\delta H_{\rm b}$	o	0.916	3.770	0.157	0.13	10	2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	σ^+	0.903	3.785	0.059	0.14	10	2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	$\sigma_{ }$	0.926	3.673	0.415	0.11	10	:-F, 4-F, 4-OH, 4-OCH ₃ , 4-NO ₂
	$\sigma_{ m R}$	0.817	3.759	-0.217	0.14	11	2-Br,
	LL.	0.906	3.648	o.344	0.11	10	3r, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-
	22	0.902	3.756	-0.105	0.14	6	Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4
δH_c	D	0.892	5.918	0.400	0.60	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂

Table s. Results of statistical analysis of infrared $v(cm^{-4})$ ($\equiv N$. ($\equiv S$. NH. (F. NMR chemical shifts (8. nnm) of Ha. Hb. Hc. ($\equiv N$ and ($\equiv S$ of 1-thiocarbamyl nyrazolines. with

	α ⁺	0.875	5.961	0.540	0.61	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	σ	0.902	5.742	0.608	0.60	10	H, 2-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	$\sigma_{\rm R}$	0.814	6.604	0.400	0.61	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	Ŀ	0.805	5.912	0.132	0.61	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	Я	0.881	6.024	0.193	0.61	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
8CN	đ	0.905	162.967	1.972	0.92	10	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃
	α+	0.907	163.10	1.938	0.80	10	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃
	σ	0.903	163.14	0.155	0.92	6	2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-NO ₂
	$\sigma_{\rm R}$	0.906	163.98	3.309	0.89	6	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OĆH ₃ , 4-CH ₃ , 4-NO ₂
	Ŀ	0.805	163.307	-0.759	1.14	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	Ч	0.907	164.01	2.668	0.86	6	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 4-F, 4-OH, 4-CH ₃ , 4-NÕ ₂
8CS	a	0.844	175.59	1.875	1.28	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	α ⁺	0.852	175.73	1.284	1.12	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	σ	0.813	175.895	- 0.207	1.43	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	σ_{R}	0.904	176.51	2.901	1.29	10	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 4-F, 4-OH, 4-OCH ₃ , 4-ČH ₃ , 4-ŇO ₂
	Ŀ	0.802	175.76	0.136	1.44	11	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 2-F, 4-F, 4-OH, 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
	Я	0.941	176.46	2.130	1.30	6	H, 2-Br, 4-Br, 2-Cl, 4-Cl, 4-F, 4-OCH ₃ , 4-CH ₃ , 4- NO,

$$\nu_{C=S}(cm^{-1}) = 1382.95(\pm 3.026) + 7.455\sigma_{I}(\pm 1.265) + 16.287\sigma_{R}(\pm 6.878)$$

$$(R = 0.966, P > 95\%, n = 11)$$

$$\nu_{C=S}(cm^{-1}) = 1382.05(\pm 2.965) + 8.530 F(\pm 1.134) + 12.136R(\pm 5.703)$$

$$(R = 0.962, P > 95\%, n = 11)$$

$$\nu_{NH}(cm^{-1}) = 3357.08(\pm 5.800) - 0.577\sigma_{I}(\pm 0.122) + 0.603\sigma_{R}(\pm 0.032)$$

$$(R = 0.902, P > 90\%, n = 11)$$

$$\nu_{NH}(cm^{-1}) = 3354.63(\pm 5.375) + 4.559F(\pm 1.119) - 0.746R(\pm 0.215)$$

$$(R = 0.915, P > 90\%, n = 11)$$

$$(4)$$

$$(4)$$

$$(4)$$

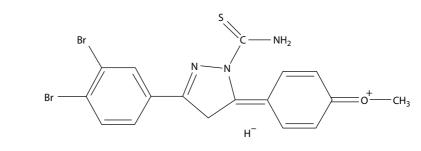
$$(7)$$

¹H NMR spectral study

The ¹H NMR spectra of synthesised 1-thiocarbomyl pyrazoline derivatives (entries 25-35) under investigation, have been recorded in deuteriochloroform solution employing tetramethylsilane (TMS) as the internal standard. The signals of the pyrazoline ring protons have been assigned. They have been calculated as AB or AA' systems, respectively. The chemical shifts (ppm) of H_a are at higher fields than those of H_b and H_c in this series of 1-thiocarbomyl pyrazolines. This is due to the deshielding of H_b and H_c which are in different chemical, as well as magnetic, environments. These H_a protons gave an AB pattern, and the H_b proton doublet of doublet, in most cases, was separated from the signals H_c and the aromatic protons. The assigned chemical shifts (ppm) of the pyrazoline ring H_a, H_b and H_c protons are presented in Table 4.

In nuclear magnetic resonance spectra, the ¹H or the ¹³C chemical shifts (δ , ppm) depend on the electronic environment of the nuclei concerned. These chemical shifts have been correlated with reactivity parameters. Thus the Hammett equation may be used in the form as shown in (8).

$$\log \delta = \log \delta_0 + \rho \sigma \tag{8}$$


Where $\delta_{\rm o}$ is the chemical shift of the corresponding parent compound.

The assigned H_a, H_b and H_c proton chemical shifts (ppm) of synthesized 1-thiocarbomyl pyrazolines have been correlated with various Hammett sigma constants. The results of statistical analysis^{20,22,27–30,36,38–43} is presented in Table 5. The H_a proton chemical shifts (δ , ppm) with Hammett σ , σ^+ , σ_1 constants and R parameters gave satisfactory correlation, along with positive ρ values, excluding 4-OH substituent. The resonance and field components failed in correlation. The failure in correlation is associated with the conjugative structure shown in Figure 3.

The results of statistical analysis of H_b proton chemical shifts (δ , ppm) of the synthesised 1-thiocarbomyl pyrazolines with Hammett substituents, F and R parameters, are shown in Table 5. The H_b proton chemical shifts (δ , ppm) with Hammett σ , σ^+ , σ_1 constants, F and R parameters, gave satisfactory correlation, excluding H, 2-Br and 4-CH₃ substituents. The Hammett σ_R constant produces poor correlation. All correlation gave positive ρ values, excluding Hammett σ_R constant and R parameter. The poor correlation is due to the absence or incapability of transmittance of resonance effect of substituents on the H_b proton chemical shifts (δ , ppm), and the association with a conjugative structure, as shown in Figure 3.

The results of statistical analysis of H_c proton chemical shifts (δ , ppm) with Hammett substituents are presented in Table 5. The H_c proton chemical shifts (δ , ppm) with Hammett σ_1 constant, gave satisfactory correlation, excluding 4-Br substituent. The remaining Hammett substituent constants, F and R parameters, showed failing correlation. All correlations produce positive ρ values. This means that the normal substituent effect operates in all systems. The reason for failure in correlation was stated earlier, and associated with a conjugative structure, as shown in Figure 3.

In view of the inability of the Hammett σ constants to produce satisfactory correlation individually, it is worthwhile looking at multiple correlations, involving either σ_1 and σ_R constants,

or Swain-Lupton's⁴³, F and R parameters. The correlation equations for H_{a-c} proton chemical shifts (δ , ppm) are given in (9)–(14).

$$\begin{split} \delta H_{a}^{(ppm)} &= 3.173(\pm 0.108) + 0.557(\pm 0.231)\sigma_{I} + 0.571(\pm 0.210)\sigma_{R} \\ (R &= 0.974, P > 95\%, n = 11) \\ \delta H_{a}^{(ppm)} &= 3.177(\pm 0.120) + 0.451(\pm 0.249) F + 0.394(\pm 0.131) R \end{split}$$

$$(R = 0.961, P > 95\%, n = 11)$$

$$\delta H_{b}^{(\text{ppin})} = 3.622(\pm 0.079) + 0.407(\pm 0.169)\sigma_{\text{I}} - 0.072(\pm 0.011)\sigma_{\text{R}}$$

$$(R = 0.966, P > 95\%, n = 11)$$
(11)

$$\delta H_{b}^{(\text{ppm})} = 3.645(\pm 0.077) + 0.339(\pm 0.161)F - 0.014(\pm 0.001)R$$
(12)

$$(R = 0.916, P > 90\%, n = 11)$$

$$\delta H_{c}^{(\text{ppm})} = 5.837(\pm 0.427) + 0.662(\pm 0.092)\sigma_{\text{I}} + 0.484(\pm 0.097)\sigma_{\text{R}}$$

$$(R = 0.926, P > 90\%, \text{ n} = 11)$$
(13)

$$\begin{split} \delta H_c^{(ppm)} &= 5.955(\pm 0.414) + 0.210(\pm 0.055)F + 0.249(\pm 0.072)R \\ (R &= 0.912, P > 90\%, \, n = 11) \end{split}$$

¹³C NMR spectra

Physical organic chemists and researchers^{20,22,27–30,36,38–43} have made extensive study of ¹³C NMR spectra for a large number of ketones, styrenes and keto-epoxides. The linear correlation of the chemical shifts (ppm) of vinyl and carbonyl carbons with Hammett σ constants, F and R parameters, in alkenes, alkynes, acid chlorides and styrenes has been investigated. In the present study, the chemical shifts (δ , ppm) of 1-thiocarbomyl pyrazoline ring C=N and C=S carbon, have been assigned and are presented in Table 4. Attempts have been made to correlate the above assigned carbon chemical shifts (δ , ppm) with Hammett substituent constants, field and resonance parameters, with the help of single and multi-regression analyses, to study the reactivity through the effect of substituents.

The observed C=N and C=S chemical shifts (δ , ppm) of synthesised 1-thiocarbomyl pyrazolines have been correlated with Hammett substituent constants and the results of statistical analysis are presented in Table 5. The C=N chemical shifts (δ , ppm) has shown satisfactory correlation with Hammett substituent constants and R parameters, along with positive ρ values, excluding H, 2-F, 4-OCH₃ and 4-CH₃ substituents. The F parameter failed in correlation and gave negative ρ values. The failure in the correlation is due to incapability of transmittance of the resonance effect of the substituents on the C=N carbon chemical shifts (δ , ppm). The chemical shifts (δ , ppm) observed for the C=S carbon of the 1-thiocarbomyl pyrazolines, have been correlated satisfactorily with Hammett σ_R constant and R parameters, excluding 2-F and 4-OH substituents. The remaining Hammett substituent constants and F parameters failed in correlation. All correlation produced positive ρ values, except σ_1 constants. This implies that the normal substituent effect operates in all thiocarbomyl pyrazolines. The failure in the correlation was due to the reason stated earlier, and it is associated with the resonance – conjugative structure, as shown in Figure 3.

In view of the inability of some of the σ constants to produce individually satisfactory correlation, multiple correlation, involving either $\sigma_{\rm l}$, $\sigma_{\rm R}$ or F and R parameters,⁴³ were used. The generated correlation equations are given in (15) to (18).

$$\begin{split} \delta^{(\text{ppm})}_{\text{C=N}} &= 163.80(\pm 0.636) + 0.534(\pm 0.0102)\sigma_{\text{I}} + 3.377(\pm 1.446)\sigma_{\text{R}} \\ (R &= 0.963, P > 95\%, \text{ n} = 11) \end{split} \tag{15}$$

$$\delta^{(\text{ppm})}_{\text{C=N}} &= 163.81(\pm 0.571) + 0.618(\pm 0.118) \text{ F} + 2.833(\pm 0.099) \text{ R} \\ (R &= 0.967, P > 95\%, \text{ n} = 11) \end{aligned} \tag{16}$$

$$\delta^{(\text{ppm})}_{\text{C=S}} &= 176.46(\pm 1.931) + 0.121(\pm 0.013)\sigma_{\text{I}} + 2.925(\pm 0.1176)\sigma_{\text{R}} \\ (R &= 0.943, P > 90\%, \text{ n} = 11) \end{aligned} \tag{17}$$

$$\delta^{(\text{ppm})}_{\text{C=S}} &= 175.18(\pm 0.472) + 0.863(\pm 0.126) \text{ F} + 2.347(\pm 1.600) \text{ R} \\ (R &= 0.944, P > 95\%, \text{ n} = 11) \end{aligned} \tag{18}$$

CONCLUSION

A series of 1-thiocarbomyl pyrazolines, including 3-(3,4-dibromophenyl)-5-(substituted phenyl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamides, have been synthesised by microwave assisted fly-ash:PTS catalyzed solvent-free cyclization of chalcones and thiosemicarbazide. The yields of the synthesized carbothioamides are more than 85%. The correlation study of infrared ν (cm⁻¹) of C=N, C=S frequencies, ¹H and ¹³C NMR chemical shifts (δ , ppm) of H_{a-c} and C=N, C=S, of 3-(3,4-dibromophenyl)-5-(substitutedphenyl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamides, have shown satisfactory correlation co-efficient in both single and multi-regression analyses.

REFERENCES

- Arulkumaran R, Vijayakumar S, Sakthinathan SP, Kamalakkannan D, Ranganathan K, Suresh R, Sundararajan R, Vanangamudi G, Thirunarayanan G. Preheated fly-ash catalyzed aldol condensation: efficient synthesis and antimicrobial activities of some 3-thienyl chalcones. J Chil Chem Soc. 2013;58(2):1553–1559.
- [2] Vijayakumar S, Arulkumaran R, Sundararajan R, Sakthinathan SP, Suresh R, Kamalakkannan D, Ranganathan K, Sathiyamoorthy K, Mala V, Vanangamudi G, Thirunarayanan G. Microwave assisted synthesis, spectral studies and antimicrobial activities of some 2',4'-difluorophenyl chalcones. *ILCPA*. 2013;9(1):68–89.
- [3] Ruhoglu O, Özdemir Z, Čalis Ü, Gümüsef B, Bilgin AA. Synthesis of and Pharmacological Studies on The Antidepressant and Anticonvulsant Activities of Some 1,3,5-Trisubstituted Pyrazolines. Arzneimittel Forschung-Drug Research. 2005;55(8):431–436.
- [4] Yusuf M, Jain P. Synthetic and biological studies of pyrazolines and related heterocyclic compounds. Arabian J Chem. 2011.
- [5] Descacq P. Anylpyrazolines nitrofuraniques: synthèse et propriétés antibactériennes. *Eur J Med Chem*. 1990;25(3):285–290.
- [6] Abunada NM, Hassaneen HM, Kandile NG, Miqdad OA. Synthesis and Antimicrobial Activity of Some New Pyrazole, Fused Pyrazolo[3,4-d]-pyrimidine and Pyrazolo[4,3-e][1,2,4]- triazolo[1,5-c]pyrimidine Derivatives. *Molecules*. 2008;13(7):1501–1517.
- [7] Parmar SS, Pandey BR, Dwivedi C, Harbison RD. Anticonvulsant activity and monoamine oxidase inhibitory properties of 1,3,5-trisubstituted pyrazolines. J Pharm Sci. 1974;63(7):1152–1155.
- [8] Kumar S, Bawa S, Drabu S, Kumar R, Gupta H. Biological activities of pyrazoline derivatives a recent development. Recent Pat Antiinfect Drug Discov. 2009;4(3):154–163.
- [9] Rostom SAF. Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. *Bioorg Med Chem.* 2006;14(19):6475–6485.
- [10] Solankee A, Solankee S, Patel G. Synthesis and antibacterial evaluation of some novel isoxazole and pyrazoline derivatives. Rasayan J Chem. 2008; (3):581–585.
- [11] Sahu S, Banerjee M, Samantra A, Behera C. Synthesis, analgesic, anti-inflammatory and antimicrobial activities of some novel pyrazoline derivatives. *Trop J Pharm Res.* 2008;7(2):961–968.

- [12] Mathew A, Mary Sheeja TL, Arun Kumar T, Radha K. Design, synthesis and biological evaluation of pyrazole analogues of natural Piperine. *Hygeia J Drugs Med.* 2011;3(2):48–56.
- [13] Mishra N, Sasmal D. Development of selective and reversible pyrazoline based MAO-B inhibitors: Virtual screening, synthesis and biological evaluation. *Bioorg Med Chem Lett.* 2011;21(7):1969–1973.
- [14] Ashok D, Pallavi K. Microwave assisted synthesis of 6-aryl-2-methyl-3-[benzothiazinylpyridinyl / 2-aminopyrimidinyl / 2- aminothiazolyl / triazolothiadiazinyl] pyridines. *Heterocyclic Commun.* 2008;14(1-2):55-62.
- [15] Ashok D, Pallavi K. Synthesis of 1-aryl-5-methyl-4-[4-aryl-6-(3-0x0-1,4-benzothiazin-6-yl)pyrid-2-yl] pyrazoles and 1-aryl-5-methyl-4-[2-amino-4-aryl-pyrimidin-6-yl]pyrazoles as antibacterial agents. *Heterocyclic Commun.* 2008;14(1-2):33-38.
- [16] Ashok D, Khalilullah M, Sudershan K. Microwave assisted synthesis of 3-(2-benzoyl-6-hydroxy-3- Methyl benzo[b] furan-5-yl)-5-(aryl)-4,5-dihydro-1h-pyrazole Carbothioamides and their antibacterial activity. *Indian J Heterocyclic Chem.* 2008;18:109.
- [17] Dawood NTA. Synthesis and antimicrobial activity of 1-(4-aryl-2-thiazolyl) and 1-(4-aryl-2-oxazolyl)-3, 5- diaryl δ2-pyrazoline derivatives. *Int J Pharm Sci Res.* 2011;2(9):2368–2375.
- [18] Malhotra P, Pattan S, Nikalje AP. Microwaves assisted synthesis and anti-inflammatory activity of 3,5-diaryl substituted-2-pyrazolines. Int J Pharm Pharm Sci. 2010;2(2):21.
- [19] Gupta R, Gupta N, Jain A. Improved synthesis of chalcones and pyrazolines under ultrasonic irradiation. Indian J Chem. 2010;49B(3):351–355.
- [20] Sakthinathan SP, Vanangamudi G, Thirunarayanan G. Synthesis, spectral studies and antimicrobial activities of some 2-naphthyl pyrazoline derivatives. *Spectrochim Acta A Mol Biomol Spectrosc*. 2012;95:693–700.
- [21] Sasikala R, Thirumurthy K, Mayavel P, Thirunarayanan G. Eco-friendly synthesis and antimicrobial activities of some 1-phenyl-3(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines. *Org Med Chem Lett.* 2012;2(1):20.
- [22] Thirunarayanan G, Mayavel P, Thirumurthy K, Dineshkumar S, Sasikala R, Nisha P, Nithiyaranjani A. Eco-friendly synthesis and spectral correlations in some 1-phenyl-3-(5-bromothiophen -2-yl)-5-(substituted phenyl)-2-pyrazolines. *European Chem Bull*. 2013;2:598–605.
- [23] Lv P-C, Li H-Q, Sun J, Zhou Y, Zhu H-L. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. *Bioorg Med Chem.* 2010;18(13):4606–4614.
- [24] Seebacher W, Michl G, Belaj F, Brun R, Saf R, Weis R. One-pot syntheses of 2-pyrazoline derivatives. *Tetrahedron*. 2003;59(16):2811–2819.
- [25] Thirunarayanan G, Surya S, Srinivasan S, Vanangamudi G, Sathiyendiran V. Synthesis and insect antifeedant activities of some substituted styryl 3,4-dichlorophenyl ketones. *Spectrochim Acta A Mol Biomol Spectrosc*. 2010;75(1):152–156.
- [26] Thirunarayanan G, Mayavel P, Thirumurthy K. Fly-ash:H2SO4 catalyzed solvent free efficient synthesis of some aryl chalcones under microwave irradiation. *Spectrochim Acta A Mol Biomol Spectrosc.* 2012;91:18–22.
- [27] Thirunarayanan G, Gopalakrishnan M, Vanangamudi G. IR and NMR spectral studies of 4-bromo-1-naphthyl chalcones-assessment of substituent effects. *Spectrochim Acta A Mol Biomol Spectrosc.* 2007;67(3-4):1106–1112.
- [28] Suresh R, Kamalakkannan D, Ranganathan K, Arulkumaran R, Sundararajan R, Sakthinathan SP, Vijayakumar S, Sathiyamoorthi K, Mala V, Vanangamudi G, Thirumurthy K, Mayavel P, Thirunarayanan G. Solvent-free synthesis, spectral correlations and antimicrobial activities of some aryl imines. *Spectrochim Acta A Mol Biomol Spectrosc*. 2013;101:239–248.
- [29] Subramanian M, Vanangamudi G, Thirunarayanan G. Hydroxyapatite catalyzed aldol condensation: Synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2,5-dimethyl-3-furyl chalcones. Spectrochim Acta A Mol Biomol Spectrosc. 2013;110:116–123.
- [30] Sathiyamoorthi K, Mala V, Sakthinathan SP, Kamalakkannan D, Suresh R, Vanangamudi G, Thirunarayanan G. Solvent-free synthesis, spectral correlations and antimicrobial activities of some aryl E 2-propen-1-ones. Spectrochim Acta A Mol Biomol Spectrosc. 2013;112:245–256.
- [31] Patil VS, Wadher SJ, Karande NA, Yeole PG. Synthesis of pyrazoline derivatives and evaluation of its antimicrobial activity. *Int J Pharm Life Sci.* 2011;1:16.
- [32] Pizzuti L, Piovesan LA, Flores AFC, Quina FH, Pereira CMP. Environmentally friendly sonocatalysis promoted preparation of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H-pyrazoles. Ultrason Sonochem. 2009;16(6):728-731.
- [33] Li J-T, Yin Y, Li L, Sun M-X. A convenient and efficient protocol for the synthesis of 5-aryl-1,3-diphenylpyrazole catalyzed by hydrochloric acid under ultrasound irradiation. Ultrason Sonochem. 2010;17(1):11–13.
- [34] Chawla R, Sahoo U, Arora A, Sharma PC, Radhakrishnan V. Microwave assisted synthesis of some novel 2-pyrazoline derivatives as possible antimicrobial agents. *Acta Polo Pharm.* 2010;67(1):55–61.
- [35] Patel VM, Desai KR. Eco-friendly synthesis of pyrazoline derivatives over potassium carbonate. Arkivoc. 2004; (1):123–129.
- [36] Sundararajan R, Arulkumaran R, Vijayakumar S, Kamalakkannan D, Suresh R, Ranganathan K, Sakthinathan SP, Vanangamudi G, Thirumurthy K, Mayavel P, Thirunarayanan G. Solid fly-ash:pts catalyzed green aldol condensation: synthesis, spectral correlation and antimicrobial potent of some aryl chalcones. *Int J Pharm Chem Sci.* 2012;1(4):1657–1674.
- [37] Özdemir Z, Kandilci HB, Gümüşel B, Čalış Ü, Bilgin AA. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur J Med Chem. 2007;42(3):373-379.
- [38] Thirunarayanan G, Vanangamudi G. Synthesis, spectral studies, antimicrobial, antioxidant and insect antifeedant activities of some 9H-fluorene-2-yl keto-oxiranes. *Spectrochim Acta A Mol Biomol Spectrosc*. 2011;81(1):390–396.
- [39] Janaki P, Sekar KG, Thirunarayanan G. SiO₂- H_3PO_4 Catalyzed solvent free aldol condensation: Synthesis and spectral correlations of some antimicrobial potent aryl E 2-propen-1-ones. *Org Chem Indian J.* 2013;9(2):68.
- [40] Thirunarayanan G, Vanangamudi G, Sathiyendiran V, Ravi K. Solvent free synthesis, spectral studies and antioxidant activities of some 6-substituted ω-bromo-2-naphthyl ketones and their esters. *Indian J Chem.* 2011;50B:593–604.

- [41] Mala V, Sathiyamoorthi K, Sakthinathan S, Kamalakkannan D, Suresh R, Vanangamudi G, Thirunarayanan G. Solventfree synthesis, spectral correlations and antimicrobial activities of some 3,4- dimethoxy chalcones. *QScience Connect.* 2013;2013:7.
- [42] Thirunarayanan G. IR & NMR spectral studies of some 7-substituted 9H-fluorenacyl bromides: Assessment of substituent effects. *ILCPA*. 2013;9(2):152–161.
- [43] Swain CG, Lupton EC. Field and resonance components of substituent effects. *J Am Chem Soc.* 1968;90(16):4328-4337.