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ABSTRACT
Cardiac malformations, most commonly valve defects, are some of the predominant causes of
cardiovascular morbidity and mortality worldwide. Up to a third of all patients with complex congenital
heart defects and numerous syndromic conditions, as well as a significant amount of the general
population, exhibit valve defects. These observations have not only major implications in infancy; they
also have a major impact on the adult population and the growing number of adults with congenital
malformations. Over recent years, a large number of Mendelian inheritance patterns and syndromic
causes have been identified, shedding light on the importance of genes encoding components of
the extracelluar matrix in valve disease. Nevertheless, we still know little about the genetic origin of
sporadic and more complex family traits. It is unclear to what extent genetic variations play a role in
disease pathogenesis and influences phenotypes rooted in early development. Such knowledge would
be greatly beneficial for counseling and treatment of patients. Therefore, this review summarizes the
findings in human non-syndromic and syndromic valve disease with a special focus on extracellular
matrix proteins, and discusses them in the context of vertebrate valve development.
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INTRODUCTION
With a worldwide incidence of 1–2%, valve disease is one of the predominant causes of
cardiovascular morbidity and mortality in all age groups. Valve defects account for a quarter of all
congenital heart diseases (CHD) [1–4]; 30% of complex CHD, such as tetralogy of Fallot (TOF) and
hypoplastic left heart syndrome (HLHS), as well as a high number of known syndromes, involve valve
defects [5]. The predominant valve phenotypes are bicuspid aortic valve (BAV), with a prevalence of
up to 2% [6,7], and mitral valve prolapse (MVP), found in 2.4% of the general population [8]. Valve
disease has not only major implications with respect to infant mortality and morbidity; it is also a
major health concern in the adult population and among the rapidly growing number of adults with
congenital malformations [9–12].
Attempts to understand cardiac circulation and its underlying anatomy date back to Aristotle [13],

the 12th century [14], and Leonardo da Vinci, who was the first to describe valve physiology
including BAV [15]. Over the last decade, a much better understanding of the interrelatedness of
genetic factors and developmental processes in heart and valve formation has emerged, and the
genetic underpinnings of cardiac morphogenesis are increasingly known. Cardiac progenitor cells are
traceable to the cranial-anterior two thirds of the primitive streak, which are among the earliest
embryonic cells to gastrulate [16,17]. A key factor for early cardiovascular specification isMesp1, a
basic helix-loop-helix transcription factor [18–20] promoting the expression of a number of cardiac
transcription factors such as Hand2, Gata4, Tbx20, and Nkx2.5 [21]. The expression domains of these
transcription factors demarcate the heart fields in the anterior lateral plate mesoderm and act in
combinatorial fashion to specify cardiac progenitors in the cardiac crescent. Expression of these
factors is controlled by endoderm-derived signals such as fibroblast growth factors (FGFs) and bone
morphogenetic proteins (BMPs) [22–25]. The first human heartbeats are observed after fusion of the
two bilateral fields at day 21 of embryonic development. The linear heart tube consists of two cell
layers (myocardium and endocardium) separated by an extracellular matrix produced by myocardial
precursor cells, the cardiac jelly [26]. Although the tubular heart lacks valves, it still is able to generate
unidirectional blood flow, through a peristaltic-like pattern of lumen occlusion. During further stages
of development, the cardiac chambers balloon out at the outer curvature and the cardiac jelly
diminishes resulting in alterations of the pumping pattern [27]. This process is still poorly understood;
hemodynamic shear stress has been found to be an important contributor to cardiac morphogenesis
at this point [28]. Endocardial cushions first appear during rightward looping of the linear heart tube
at the level of the atrioventricular (AV) canal and outflow tract (Fig. 1). At the molecular level, these
regions are marked by the expression of specific markers, e.g. Tbx2 [29]. A second wave of myocardial
cells, which are derived from the second heart field, enter the heart at both poles of the tubular heart
leading in particular to the formation of the right ventricle and the outflow tract. On the molecular
level this process is characterized by the expression of Fgf10 and Isl1, although Isl1 is also expressed
transiently in first heart field cells [30–33]. As depicted in Fig. 1, several sources contribute cells to
the mature heart, such as the cardiac neural crest [34,35], and the proepicardial cells [36–40].
Altogether, these migratory cell population processes play an important role in valvulogenesis,
including endothelial-to-mesenchymal transition (EMT), remodeling, and maturation of the semilunar
(SL) and atrioventricular (AV) valves in the outflow tract (OFT) and AV canal (AVC).

VALVE DEVELOPMENT AND ORIGIN OF VALVULAR PRECURSOR CELLS
Cushion formation in the OFT and AVC in vertebrates is initiated during early looping when signals
from the myocardium induce endothelial-to-mesenchymal transformation (EMT) in adjacent
endocardial cells. This, in turn, increases the synthesis of extracellular matrix (ECM) and leads to cell
invasion of the cardiac jelly between the myocardium and the endocardium, resulting in the
formation of endocardial cushions (Fig. 1), which over time effectively prevents blood regurgitation in
the developing heart [41]. Further steps in valve formation include the remodelling and maturation
process in which heart valve progenitor cells diversify and differentiate into interstitial valve
fibroblasts [42,43]. In the course of this remodelling process, the ECM becomes compartmentalized
and displays region-specific differences in cellular and matrix composition. It consists of the fibrosa,
the spongiosa and the ventricularis of the semilunar valves (SL) or the atrialis of the atrioventricular
(AV) valves [44]. The precise distribution of extracellular matrix components within these layers
contributes to valve development through cell guidance and life-long maintenance of proper function.
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Histopathological evidence shows that this spatiotemporal coordination of ECM organization is
perturbed in diseased valves [45].
The origin of cells within the developing valve is not fully understood. Several studies

systematically investigated the contribution of the different cell lineages in the outflow tract, the AV
canal as well as valve leaflets and suggest multiple origins [46–50]. The precursor for myocardial and
endocardial cells of the OFT arises from the second heart field in the splanchnic mesoderm [51]; early
mesenchymal cells for endocardial cushion formation are primarily of endocardial origin [47,52–56].
However, there is conflicting evidence about other subpopulations of cells (e.g. neural crest and
proepicardium) in the individual leaflets suggesting they might arise from distinct or different
embryonic sources. In addition, little is known about the origin of the valve interstitial cells (VICs) and
whether or not they contain different subpopulations, with specific contributions to mature valve
structure and function [57].

THE GENETIC NETWORKS UNDERLYING VALVE DEVELOPMENT
Several hallmarks of valve development, such as cell migration and EMT, are morphological
characteristics in cancer and inflammation. Not surprisingly, similar molecular signatures are found in
valve development, such as TGFβ- and WNT-signalling (Figs. 2 and 3).
The TGFβ superfamily consists of more than 30 members, all of which are secreted proteins.

TGFβ-signalling can exert its function through the canonical pathways and the
non-canonical/non-SMAD pathways. The latter activates different pathways including MAP kinase,
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Figure. 1 Important events during valve development. A. Schematic figure of the first signs of valvular cushion
formation in mouse embryos at Stage 9.5 dpc. The heart is already looped at this point in the OFT, and the AVC-
EMT derived cells migrate in to the cardiac jelly to establish a functioning valve apparatus. Adapted from [58].
B. Migration of the neural crest cells into the outflow tract at stage 12.5 dpc. Neural crest cells play a major role
in the formation of the outflow tract and its valvular structures. Disturbances in this migration process results in
severe outflow tract anomalies including malfunctioning valves. Adapted from http://php.med.unsw.edu.au. C.
Cell immigration into the mesenchyme of the AVC cushions. The Black dots show epicardial cells in the valvular
region at stage HH 25 and HH 35 in the chick. Grey dots demarcate the endocardial cells after EMT. Taken
from [47]. Abbreviations: NT — neural tube; DA — dorsal aorta; NCC — neural crest cells; RA — right atrium;
LA — left atrium; RV — right ventricle; LV — left ventricle; OFT — outflow tract; EMT — epithelial-mesenchymal
transition; AV — atrio-ventricular canal; AAA — aortic arches arteries; Ao — aorta; PA — pulmonary artery; A —
atrium; V — ventricle; M —myocard; E — epicard; SE — endocard.
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RHO-like GTPase and phosphatidylinositol-3-kinase/AKT pathways. The canonical TGFβ-signalling
cascade initiates phosphorylation by type I receptor (ACTR-like kinases ALKs) of type II receptor
(BMPRII, ACTRII and ACTRIIB).
The role of the non-canonical TGFβ-signalling pathway in EMT is mostly demonstrated through the

activation of ERK and MAPK (Fig. 2). Remarkably, so far it is unclear in mice if the TGFβ pathway is
essential for EMT, since mice with a conditional endocardial and myocardial deletion of TGFβ RII only
show a reduced growth rate of the cushion [59]. Nevertheless, the importance of TGFβ for valve
development in the avian embryo has been shown on several occasions [60–62]. In addition, the
bone morphogenetic proteins (BMPs), members of the TGFβ-superfamily, also demonstrate important
functions in valve development. Cardiac deletion of Bmp2 results in a loss of Tbx2 expression, which
is necessary for chamber-specific gene expression, enhanced cardiac jelly formation and activation of
Has2, Twist1 and Notch1, all of which are involved in valve development [63]. As shown in Fig. 2
these effects occur via the activation of SMAD1/5/8 [64]; whereas, the activation of SMAD2/3 and
the resulting induction of the transcription factor SLUG occurs via TGFβ [65,66]. The importance of
BMP signaling is not restricted to early events of valvulogenesis. Deletion of Smad6 in mice leads to
hyperplasia of the valve primordia [67] and Bmp4mouse mutants show hypocellular OFT and AVC
cushions [68].
In a comparative gene expression analysis, active WNT/ β-CATENIN signalling and Fog1 expression

was identified in developing endocardial cushions [69]. Consistent with this observation, increased
WNT/ β-CATENIN signaling, such as in the Apc knockout mouse, leads to excessive cushion formation,
whereas over expression of dickkopf1 and subsequent down regulation of WNT signaling leads to
hypo-cellular cushions (Fig. 2) [70,71]. In addition, targeted Notch1mutations in mice result in
hypo-cellular valve primordia due to EMT defects. Several processes are necessary for this effect
(depicted in Fig. 2); Notch1 induction of Snail and the lateral promotion of selective
TGFβ-signalling [72]. Functional analysis demonstrated that the Notch1 target genes Hey1 and Hey2
are involved in myocardial restricted expression of Bmp2 and Tbx2 to the presumptive valve
myocardium [73,74]. Highlighting the importance of the endocardial-myocardial interactions during
valve development via NOTCH1/BMP2-induced Snail1 expression and the nuclear accumulation of
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BMP2-mediated SNAIL1 to regulate the extent of EMT in AVC and OFT [75–77]. The interplay of these
pathways is not restricted to early events; it also has implications in aortic valve disease by later
controlling the master regulator of osteogenesis CBFA1/RUNX2 [78]. Several additional factors have
been identified in later events of valvulogenesis. The direct NOTCH target Runx3 is necessary for
maintaining the mesenchymal fate after termination of NOTCH signaling, [79] and Nfatc1 promotes
ECM-remodeling [80,81]. Nfatc1 is activated by Rankl and exerts its functions via its downstream
target CathepsinK [82]. Interestingly, Vegf together with NFatc1 are necessary to maintain the
endothelial cell layer during endocardial cushion formation through activation of MEK1-ERK1/2 or
JNK1/2 signalling [60,83,84]. Activation of ERK1/2 within the cushion mesenchyme [85,86] has also
been observed in Noonan syndrome caused by mutations of SHP-2. Araki et al. showed that
increased ERK activation, downstream of ERBB family receptor tyrosine kinases results in an extended
interval for EMT and causes valve defects [87]. Of note is the observation that the ERBB receptor
family knockout mice show heart and/or valve phenotypes resulting in lethal outcome [88–93].
Similar observations have been made for additional essential component of the NRG1/ERBB
signaling pathway such as Adam17 and 19 [90,94,95], which are necessary for the ectodomain
shedding of neuregulins.
The interplay of these genetic pathways as shown in Figs. 2 and 3 with hemodynamic factors in the

developing valve is at the basis of early and late valve disease. Studies in zebrafish show that valve
and cardiac morphogenesis depend on the geometry of the beating heart, suggesting that the
physical environment including hemodynamics plays a critical role in its development [96,97].
Remarkably, the full extent to which hemodynamic factors are necessary for normal valve
development is not clear, since the silent heart mutant develops normally, suggesting that
hemodynamics are not important. However, this conclusion is probably not correct, since evidence for
an important morphogenetic role of hemodynamics in heart development comes from mouse
studies. Yashiro et al. [98] showed that Pitx2 expression in the outflow tract has an impact on
asymmetric remodeling of the great arteries through hemodynamics. In addition, experiments in
zebrafish focusing on the atrioventricular (AV) canal development before and during valvulogenesis
have shown that the amount of retrograde flow determines valve growth and reduces klf2a
expression in valve precursors [28,99]. These experiments highlight the important effects of
hemodynamics on valve morphogenesis. It remains to be seen how important and to what extent
hemodynamics are morphogenetic and if they are equally strong compared to the genetic effects in
human valve development. Interestingly, abnormalities in early development uncovered by
cumulative hemodynamic stress and environmental factors in adulthood point to a substantial
genetic component.

GENETICS OF NON-SYNDROMIC HUMAN VALVE DISEASE
In most cases, valve disease in humans occurs on a sporadic basic and in the absence of an
underlying medical syndrome. The causes for these diseases remain largely unknown, with most
studies showing that valve disease is a genetically-heterogeneous, complex trait [57,100,101]. As an
example, family-based studies have identified loci for BAV and hypoplastic left heart syndrome on
chromosomes 5, 13 and 18 [102–104], and for mitral valve prolapse (MVP) on chromosome 13, 11,
16 and X [105–109]. In all clinical and genetic studies on human valve disease, variable expressivity,
reduced penetrance and allelism are widely observed.
As an example, mutations in BMP receptors and their downstream targets are involved in a wide

variety of vascular and cardiac conditions [64,110,111]. Decreased BMP signaling caused by ALK2
mutations has been implicated as a cause of atrioventricular septal defects; conversely,
gain-of-function mutations in the same gene are the cause of progressive fibrodysplasia
ossificans [112,113]. Knockdown of endothelial Alk3 and neural crest Alk2 in mice results in severe
endocardial cushion defects [112,114,115]. Within this same pathway, mutations of SMAD4 have
recently been identified in the context of aortopathy and mitral valve disease [116]. This gene had
previously been identified as a cause of juvenile polyposis syndrome [117–119]. Dominant missense
mutations of GATA4 can result in impaired binding to SMAD4, thus linking the two cascades at the
transcriptional level [120]. Interestingly, mutations in SMAD3 have recently been reported to cause a
syndrome presenting with perturbations of the whole arterial tree, including aneurysms and
early-onset osteoarthritis [121].
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Identified in both familial and sporadic cases, mutations in the NOTCH1 gene on chromosome
9q34 have been shown to contribute to BAV and aortic calcifications [122–125]. The importance of
the NOTCH pathway in human valve disease is further strengthened by the finding that mutations of
JAGGED1, a NOTCH ligand, cause Alagille Syndrome, a multisystem disorder with pulmonary valve
stenosis [126,127]. The identification of specific mutations reducing JAGGED1-induced NOTCH1
signalling provides further evidence of tightly controlled signal transduction during valve
development and highlights its role as a modifier or causal gene for human valve disease [123].
Further downstream of NOTCH, several components of cardiac-specific transcription cascades, such
as NKX2.5, GATA4, TBX5, HEY2, and CITED2 (Table 1) have been implicated in human valve disease
based on candidate gene and linkage studies, respectively [128–136].
In most human studies, variable expressivity and reduced penetrance in obligate mutation carriers

have been the rule rather than the exception. For example, patients with aortic aneurysm due to
mutations ACTA2 [137] andMYH11 [138] show BAV with reduced penetrance (Table 1). These
observations are not limited to humans: mice heterozygous for a targeted Nkx2.5 allele, have an
increased incidence of valvuloseptal defects [139], and 25% of mice with a homozygous deletion of
Gata5 have BAV (Fig. 4) [140]. Using a targeted breeding strategy of Nkx2.5 heterozygous mice,
Winston et al. showed that a balance between several modifying loci contributes to both
heterogeneous heart defects as well as normal heart development in this mouse model [139].
Knowing that proper heart development is guided through a combinatorial genetic network, it is
tempting to speculate that multiple perturbations in the pathways described above account for the
non-Mendelian patterns of human valve disease.

GENETICS OF SYNDROMIC HUMAN VALVE DISEASE
Several syndromic conditions shed additional light on the genetics of valve disease in humans. For
the purpose of this review, we will focus on mutations in extracellular matrix (ECM) proteins. Such
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mutations have been described to disturb valve formation and are associated with specific
histopathological phenotypes.
William’s syndrome is caused by mutations in ELASTIN (ELN) and goes along with supravalvular

aortic stenosis [141]. This phenotype is partly recapitulated in heterozygous Eln knockout
mice [142–144]. ELN is the earliest structural matrix protein expressed by smooth muscle cells (SMC)
and closely linked to the evolution of the closed vertebrate circulatory system [145]. Transcripts are
detected initially in the Truncus arteriosus [146], and its expression is initiated during cusp
development [147]. ELN and Collagen (COL) molecules are linked by Lysyl oxidases (LOX) and
microfibrils consisting of Fibrillin (FBN) to form a macromolecular complex in the ECM. Mutations in
COL have been found in a variety of different syndromes, such as the Osteogenesis imperfecta and
Stickler syndrome [148–151]. Valve anomalies are also observed in patients with Ehlers–Danlos
syndrome, characterized by mutations in different COL proteins [152]. Cardiac and valve phenotypes
have been observed for ColVa1 and ColXIa1mutants [153]; and homozygous mutant Col3Amice
partially replicate the human phenotype [154]. Also, loss of function in LOX proteins necessary for
linking of ELN and COL molecules in the ECM [155] shows a cardiac phenotype. Indeed, the
phenotype of targeted Lox - mice (Lox−/−) is lethal soon after birth, most likely due to severe defects
in the cardiovascular system (valvular regurgitation, aortic aneurysms and cardiac dysfunction) and
diaphragmatic rupture [156,157]. Furthermore, their function is not restricted to scaffolding. Studies
have shown that they also modulate the SMC [158], interact with TGFβ [159] and have a direct effect
on the promoter of Eln [160] and Col [161]. Notably, LOXL1, a member of the LOX-like proteins
interacts with FIBULIN (FBLN) 5 [162]. Mice deficient for Fbln5 and Fbln4 show disorganized elastic
fibers leading to defects in the lung, blood vessels and skin resulting in perinatal death. The vascular
phenotype in Fbln4mice is much more severe than that of Fbln5 knockout mice, owing to a more
pronounced perturbation of the vascular tree, including a narrowed and tortuous aorta characterized
by irregular ELN aggregates [163,164]. Valvular phenotypes in Fbln4 knockout mice include
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Figure. 4 Gata5 is required for aortic valve formation. (A and B) Anatomic analysis reveals the presence of BAV in
Tie2-cre+Gata5fl/flmice. Arrows point to an attachment of the valve cups to the aortic wall. (C andD) Histological
analysis of the outflow tract of (C) wild type, and (D) Tie2-cre+Gata5fl/flmutant at E11.5. Arrow shows abnormal
fusion resulting in an R-N BAV. Figure reproduced with permission from [140].
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thickening of the aortic valvular leaflets and are associated with aortic valve
insufficiency/stenosis [165]. Observations in patients with cutis laxa syndromes caused by mutations
in FBLN5 or FBLN4 corroborate these findings from animal models [166,167].
The best-studied model for defects in the extracellular matrix and changes in the TGFβ signaling

cascade is the Marfan syndrome caused by inherited or de novomutations in FBN1. Diagnostic
criteria for this syndrome include skeletal, ocular and cardiovascular manifestations [168,169].
Valvular phenotypes are well described including thickening of the mitral and aortic valves [170].
Similar changes are observed in null mutant mice, since FBN1-deficient mice develop MVP [171]. In
addition FBN2mutations have been observed in patients with the Beal syndrome, an autosomal
dominant disease with vascular anomalies including MVP [172,173]. The phenotype observed in
mice lacking Fbn2 only recapitulates the skeletal, but not cardiac, anomalies most possibly through
alterations in BMP signaling [174]. Remarkably, mutated FBN2 in Zebrafish results in notochord and
vascular defects [175]. Mutations of FBN1 are not limited to Marfan syndrome; they also cause the
allelic conditions Shprintzen–Goldberg syndrome, MASS syndrome, stiff skin syndrome, isolated
ectopia lentis, and autosomal dominant Weill–Marchesani syndrome.
Two type of the Loeys–Dietz syndrome (LDS) inherited in an autosomal dominant pattern are

caused by mutations in TGFBR1 also TGFBR2. Type 1 shows arterial turtosity aneurysms,
hypertelorism and bifid uvula or cleft palate as well as a widespread systemic involvement. Type 2
lacks the craniofacial involvement and only occasionally shows a bifid uvula [176]. Cardiac
manifestations include the predisposition for aortic dissection and subsequent rupture; MVP is also
observed but to a much lesser extent than in Marfan syndrome [177]. Additional cardiac findings
include a patent ductus arteriosus, atrial septal defects, and bicuspid aortic valve. Interestingly,
mutations of the TGFBR1 gene, which is predominately mutated in Loeys–Dietz syndrome, are also
found in the Shprintzen–Goldberg syndrome [178,179]. Commonly, mitral valve prolapse without
aortic dissection is seen in a number of other type 1 fibrillinopathies either caused by or associated
with mutations in the FBN1 gene such as several MASS (mitral valve prolapse, upper limits of aortic
root diameter, stretch marks of the skin and skeletal conditions) phenotypes. The Weil–Marchesani
syndrome (WMS) includes a subluxation of microspherophakic lenses, short stature, brachydactyly
and congenital heart disease—mainly valvular anomalies—and is caused by either mutations in
FBN-1 or one of the two metalloproteinases ADAMTS10 and 17 [180,181]. No animal model has
been established in WMS so far, but heterozygous Adamts9mice show anomalies in the aortic wall,
valvulosinus, valve leaflets and spongy myocardium, consistent with non-compaction of the left
ventricle [182,183]. In addition, metalloproteinases are tightly linked to cleavage of VERSICAN
(VCAN), which may directly affect a key regulatory network in the vascular wall centered around FBN1
and regulates TGFβ signaling [184,185]. VCAN, a member of the Aggrecan/Versican Proteoglycan
family, is a major component of the ECM and has been shown to be important for EMT in the
production of cardiac mesenchyme [186,187]. Mice with an altered Vcan gene product die of heart
defects. Secreted VCAN is regulated by proteolysis, a process that enables subsequent deposition of
ECM molecules throughout cardiac development, especially during atrioventricular remodeling,
cardiac outlet formation as well as growth and compaction of the trabeculae in the ventricular
myocardium [188–190]. Increased VCAN cleavage is correlated with regression of neointimal
thickening and the loss of proteoglycans [191]. It has also been shown that proteoglycans play a
significant role in the adaptation to the high shear stress generated by blood flow in the aorta [192]
pointing to a possible mechanism of lifelong hemodynamic stress in valve disease.
Interestingly, another protein belonging to the large superfamily of ADAMTS proteases and

ADAMTS-like proteins ADAMTSL2 causes autosomal recessive geleophysic dysplasia (GD) going along
with valvular thickening and atrial septal defects. The fact that ADAMTSL2 enhances TGFβ signaling
most likely through the binding of LTBP1 [193–195] shows again the importance of this signaling
pathway in valve disease and points to possible curative strategies that are being successfully
implemented in Marfan Syndrome [196–200]. Given the structural and functional similarities
between many ADAMs and ADAMTSs, it is tempting to speculate that they contribute to human valve
disease in an allelic fashion.
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Table 1. Mutated human genes with valvular defects and its cardiac expression pattern at E14.5
in mouse embryos. All of the depicted genes show a localized expression in the endothelium and
the valves, highlighting the importance of these genes in valve development. Pictures are taken
from www.eurexpress.org [213]. Abbreviations: Mitral valve prolaps (MVP), Pulmonal stenosis (PS),
Bicuspid aortic valve (BAV), Aortic stenosis (AS), Mitral valve anomaly (MVA).

Gene Locus Valve
phenotype

Syndrome/associated
phenotypes

Reference Expression
pattern in the
mouse heart at
E14.5

NOTCH1 9q34.3 BAV non-syndromic [122–125]

ACTA2 10q23.31 BAV non-syndromic [137]

NKX2.5 5q35.1 MVA, AS AV block [128–130,201]

GATA4 8p23.1 PS Atrial septal defect [133,201–204]

TBX5 12q24.1 AS, MVP HOLT-ORAM [134,205,206]

FLNA Xq28 MVP OTOPALATODIGITAL
SPECTRUM DISORDER

[207,208]

ELN 7q11.2 BAV, MVP WILLIAMS-BEUREN [141]

FBN1 15q21.1 MVP, BAV MARFAN, MASS,
WEILL-MARCHESANI,
SHPRINTZEN-GOLDBERG

[179,209,210]

COL1A1 17q21.31-q22 MVP OSTEOGENESIS
IMPERFECTA TYPE

[151]

(continued on next page)

CONCLUSIONS
Taken together, the presented studies highlight the importance of several interacting gene networks
acting at the growth factor/receptor, extracellular matrix protein, and transcriptional control levels,
which are essential to the morphogenesis and structural integrity of the valves throughout life.
Although a number of Mendelian traits and many syndromic causes have been identified, we still
know little about the genetic origin of sporadic and more complex family traits. Insight into these
processes will be certainly coming from the steadily growing number of NextGeneration sequencing
data and further studies in animal models. For instance, it has to be elucidated if the proteins mutated

www.eurexpress.org
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Table 1 (continued)

Gene Locus Valve
phenotype

Syndrome/associated
phenotypes

Reference Expression
pattern in the
mouse heart at
E14.5

COL1A2 7q22.1 MVP OSTEOGENESIS
IMPERFECTA TYPE

[151]

TGFBR1 3p22 MVP LOEYS-DIETZ [176]

COL4A1 13q34 MVP PORENCEPHALY, FAMILIAL [211]

COL2A1 12q13.11 MVP STICKLER [150,212]

COL9A1 6p21.3 MVP STICKLER [149]

COL3A1 2q31 BAV, MVP EHLERS-DANLOS [152]

FBLN5 14q32.1 PS CUTIS LAXA [167]

FBN2 5 q23-q31 MVP BEALS-HECHT [172,173]

are acting as modifiers or directly causing the disease phenotype. This is especially important with
respect to phenotypes rooted in early development, which only become fully penetrant later in life.
This knowledge will be of great benefit for counseling and treatment of patients with valve disease.
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