1887
Carbon Capture and Storage Workshop, Texas A&M University in Qatar
  • ISSN: 2220-2765
  • EISSN:

Abstract

Abstract

The paper gives a general introduction and overview of Carbon Capture and Storage (CCS) with an emphasis on the capture of CO  and other greenhouse gases from the waste gas streams of power plants and industrial processes. This stage accounts for about 80% of the overall cost of the CCS process so is the area where efficiency and cost improvements will have the greatest future impact. The major drivers for continuing to use fossil fuels for most of this century are first considered and the need to implement CCS as one of many measures to mitigate carbon emissions. Current targets will require a commercial CCS capacity to remove about 10Gte CO  pa by 2050. The overall features of CCS processes are described – capture, compression and transport, sub-surface storage – covering the main capture options and the three main types of storage site (deep saline aquifers, depleted oil and gas reservoirs and unmineable coal seams). The current status of large-scale CCS demonstration projects is reviewed. The main classes of carbon capture technologies are then described, both those currently capable of large-scale deployment and those in development for the future. Finally the main challenges facing CCS, to make it a globally-deployed commercially viable technology, are summarised and suggestions made for future developments in the clean recovery and use of fossil fuels which combine CCS with sub-surface processing.

Loading

Article metrics loading...

/content/journals/10.5339/stsp.2012.ccs.9
2012-12-17
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/stsp/2012/2/stsp.2012.ccs.9.html?itemId=/content/journals/10.5339/stsp.2012.ccs.9&mimeType=html&fmt=ahah

References

  1. BP Statistical Review of World Energy 2011, www.bp.com/statisticalreview.
  2. For example Owen Nick A., Inderwildi Oliver R. and King David A. Energy Policy. 2010; 38::8, 4743.
    [Google Scholar]
  3. United Nations Framework Convention on Climate Change (UNFCCC), National greenhouse gas inventory data for the period 1990–2007. Note by the secretariat. FCCC/SBI/2009/12, Available from http://unfccc.int/2860.php.
  4. Carbon Dioxide Information Analysis Centre (CDIAC). Available from: http://cdiac.ornl.gov/ftp/ndp030/global.1751_2006.ems.
  5. US National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division, http://www.esrl.noaa.gov/gmd/ccgg/trends/.
  6. United Nations Framework Convention on Climate Change, http://unfccc.int/kyoto_protocol/items/3145.php.
  7. Intergovernmental Panel on Climate Change: 4th Assessment Report 2007, http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html.
  8. International Energy Agency World Energy Outlook 2009, http://www.iea.org/textbase/nppdf/free/2009/weo2009.pdf.
  9. US Energy Information Administration, National Energy Information Centre, http://www.eia.gov/oiaf/1605/ggccebro/chapter1.html.
  10. Dean C., Dugwell D. and Fennell P.S. Energy & Environmental Science. 2011; 4::6, 20502053.
    [Google Scholar]
  11. International Energy Agency, Technology Roadmap: Carbon Capture and Storage in Industrial Applications, 2011, http://www.iea.org/Papers/roadmaps/ccs_industry.pdf.
  12. International Energy Agency, Energy Technology Perspectives, 2008.
  13. Global CCS Institute, ‘The global statusof CCS 2010’, 2011, http://cdn.globalccsinstitute.com/sites/default/files/publications/12776/global-status-ccs-2010.pdf.
  14. International Energy Agency, Carbon Capture and Storage Roadmap 2009, http://www.iea.org/Papers/2009/CCS_Roadmap.pdf.
  15. Parson E.A. and Keith D.W.  Fossil Fuels Without CO 2  Emissions. Science. 1998; 282::10531054.
    [Google Scholar]
  16. Davison J., Freund P. and Smith A. IEA Greenhouse Gas R&D Programme, Putting carbon back into the ground, 2001.
  17. Carter L.D. Enhanced Oil Recovery and CCS, United States Carbon Sequestration Council, 2011, http://www.uscsc.org/Files/Admin/Educational_Papers/Enhanced%20Oil%20Recovery%20and%20CCS-Jan%202011.pdf.
  18. White Curt M., Smith Duane H., Jones Kenneth L., Goodman Angela L., Jikich Sinisha A., LaCount Robert B., DuBose Stephen B., Ozdemir Ekrem, Morsi Badie I. and Schroeder Karl T. Energy and Fuels. 2005; 19::3, 659724.
    [Google Scholar]
  19. See for example US DOE’s Research in CO 2  and Other Gas Injection for Enhanced Oil Recovery, National Energy Technology Laboratory, September 2008, www.netl.doe.gov/kmd/cds/disk22/A-Introduction/Overview%20of%20DOEs%20CO2%20Program%20History.doc.
  20. Mac Dowell N., Florin N., Buchard A., Hallet J., Galindo A., Jackson G., Adjiman C., Williams C., Shah N. and Fennell P.  An overview of CO 2  capture technologies. Energy and Environ. Sci.. 2010; 3::16451669.
    [Google Scholar]
  21. Florin N.H. and Fennell P.S. Imperial College London, Grantham Institute for Climate Change, Briefing paper No. 3, November 2010.
  22. Al-Juaied Mohammed and Whitmore Adam ‘Realistic Costs of Carbon Capture’. Discussion Paper 2009-08, Energy Technology Innovation Research Group, Belfer Center for Science and International Affairs, Harvard Kennedy School, July 2009. http://belfercenter.ksg.harvard.edu/publication/19185/realistic_costs_of_carbon_capture.html.
  23. US DoE, National Energy Technology Laboratory, The costs of CO 2  capture and storage in geological formations, 2008, http://www.netl.doe.gov/publications/factsheets/program/Prog065.pdf.
  24. EU Zero Emissions Platform, The costs of CO 2  capture, transport and storage, 2011, http://cdn.globalccsinstitute.com/sites/default/files/publications/17011/costs-co2-capture-transport-and-storage.pdf.
  25. Kohl A.L. and Nielsen R.B. Gas Purification. 5th Edition, Gulf Publishing Company Houston, Texas. 1997.
    [Google Scholar]
  26. Alie C., Backham L., Crosietand E and Douglas P.L. Energy Convers. Manage. 2005; 46::475487.
    [Google Scholar]
  27. Herzog H. The Capture, Utilisation and Disposal of Carbon Dioxide from Fossil Fuel-Fired Power Plants, Department of Energy Technical Report DOE/ER-30194, 1993.
  28. Florin Nick H., Mac Dowell Niall, Fennell Paul S. and Maitland Geoffrey C.  Carbon capture: materials and process engineering. Materials for a Sustainable Future. Letcher Trevor M. and Scott Janet L. eds., 2012. Royal Society of Chemistry. Chapter 12
    [Google Scholar]
  29. Tong D., Trusler J.P.M., Maitland G.C., Gibbins J. and Fennell P.S.  Solubility of carbon dioxide in aqueous solution of monoethanolamine or 2-amino-2-methyl-1-propanol: Experimental measurements and modelling. Int. J. Greenhouse Gas Control. 2012; 6::3747.
    [Google Scholar]
  30. Rhudy R. and Black S. Chilled ammonia process update. In 10th International Network for CO 2  Capture, Lyon, France, 24–25 May 2007.
  31. Figueroa J.D., Fout T., Plasynski S., McIlvried H. and Srivastava R.D. Int. J. Greenhouse Gas Control. 2008; 2::920.
    [Google Scholar]
  32. Chakma A. and Meisen A. Can. J. Chem. Eng.. 1997; 75::861871.
    [Google Scholar]
  33. Edali M., Aboudheir A. and Idem R. Int. J. Greenhouse Gas Control. 2009; 3::550560.
    [Google Scholar]
  34. Davison J. and Thambimuthu K. Proc. Inst. Mech. Eng., Part A. 2009; 223::201212.
    [Google Scholar]
  35. Hallett J.P. and Welton T. Chem. Rev. 2011 May 11; 111::5, 35083576.
    [Google Scholar]
  36. Blamey J., Anthony E.J., Wang J. and Fennell P.S. Prog. Energy Comb. Sci. 2010; 36::260279.
    [Google Scholar]
  37. Manovic V. and Anthony E.J. Environ. Sci. Tech. 2008; 42::11, 41704174.
    [Google Scholar]
  38. Florin N.H., Blamey J. and Fennell P. Energy Fuels. 2010; 24::8, 45984604.
    [Google Scholar]
  39. Smith M.Properties and behaviour of SO 2 adsorbents for CFBC, IEA Clean Coal Centre: London technical report, 2007.
  40. Abanades J.C., Anthony E.J., Wang J. and Oakey J.E. Environ. Sci. Technol. 2005; 39::28612866.
    [Google Scholar]
  41. Blamey J., Lu D.Y., Dugwell D., Anthony E.J. and Fennell P.S. Ind. Eng. Chem. Res. 2011; 50::1032910334.
    [Google Scholar]
  42. Drage T.C., Blackman J.M., Pevida C. and Snape C.E. Energy Fuels. 2009; 23::27902796.
    [Google Scholar]
  43. Long J.R. and Yaghi O.M. Chem. Soc. Rev. 2009; 38::12011508.
    [Google Scholar]
  44. Englezos P. and Lee J.D. Korean J. Chem. Eng. 2005; 22::671681.
    [Google Scholar]
  45. Kang S.P. and Lee H. Environ. Sci. Technol. 2000; 34::43974400.
    [Google Scholar]
  46. Scott S.A., Dennis J.S., Hayhurst A.N. and Brown T. AIChEJ. 2006; 52::33253328.
    [Google Scholar]
  47. Lyngfelt A., Leckner B. and Mattisson T. Chem. Eng. Sci. 2001; 56::31013113.
    [Google Scholar]
  48. Bohn D., Müller C.R., Cleeton J.P., Hayhurst A.N., Davidson J.F., Scot S.A. and Dennis J.S. Ind. Eng. Chem. Res. 2008; 47::76237630.
    [Google Scholar]
  49. Ryu H.-J. and Jin G.-T. Korean J. Chem. Eng. 2007; 24::527531.
    [Google Scholar]
  50. Merkel T.C., Lin H., Wei X. and Baker R. J. Membr. Sci. 2010; 359126139.
    [Google Scholar]
  51. National Renewable Energy Laboratory Technical Report (NREL TP-580-24-190). A look back at the US DOE’s Aquatic Species Program: Biodiesel from Algae. Available from http://www.nrel.gov/docs/legosti/fy98/24190.pdf.
  52. Tamburic B., Zemichael F.W., Maitland G.C. and Hellgardt K.  Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Int. J. Hydrogen Energy. 2011; 36::78727876.
    [Google Scholar]
  53. Figueroa J.D., Fout T., Plasynski S., McIlvried H. and Srivastava R.D. Int. J. Greenhouse Gas Control. 2008; 2::920.
    [Google Scholar]
  54. Yang W.C. and Ciferno J.Assessment of Carbozyme Enzyme-Based Membrane Technology for CO 2  Capture from Flue Gas, DOE/NETL 401/072606, 2006.
  55. Castle W.F. Int. J. Refrigeration. 2002; 25::158172.
    [Google Scholar]
  56. Stanford University Global Climate & Energy Project: an assessment of Carbon Capture Technology and Research Opportunities, 2005.
  57. Arakawa H., Aresta M., Armor J.N., Barteau M.A., Beckman E.J., Bell A.T., Bercaw J.E., Creutz C., Dinjus E., Dixon D.A., Domen K., DuBois D.L., Eckert J., Fujita E., Gibson D.H., Goddard W.A., Goodman D.W., Keller J., Kubas G.J., Kung H.H., Lyons J.E., Manzer L.E., Marks T.J., Morokuma K., Nicholas K.M., Periana R., Que L., Rostrup-Nielson J., Sachtler W.M.H., Schmidt L.D., Sen A., Somorjai G.A. and Stair P.C. Chem. Rev. 2001; 101::953996.
    [Google Scholar]
  58. Aresta M. ACS Symp. Ser. 2003; 852::239.
    [Google Scholar]
  59. Gislason S.R., Wolff-Boenisch D., Stefansson A., Oelkers E.H., Gunnlaugsson E., Sigurdardottir H., Sigfusson B., Broecker W.S., Matter J.M., Stute M., Axelsson G. and Fridriksson T. Int. J. Greenhouse Gas Control. 2010; 4::537545.
    [Google Scholar]
  60. Benson E., Kubiak C.P., Sathrum A.J. and Smieja J.M. Chem. Soc. Rev. 2009; 38::8999.
    [Google Scholar]
  61. Jessop P.G., Joo F. and Tai C.C. Coord. Chem. Rev. 2004; 248::24252442.
    [Google Scholar]
  62. Sakakura T., Choi J.C. and Yasuda H. Chem. Rev. 2007; 107::23652387.
    [Google Scholar]
  63. Darensbourg J. Chem. Rev. 2007; 107::23882410.
    [Google Scholar]
  64. Xia T.X. and Greaves M. Chem. Eng. Res. Design. 2006; 84::856864.
    [Google Scholar]
  65. Shah Amjad, Fishwick Robert, Wood Joseph, Leeke Gary, Rigby Sean and Greaves Malcolm Energy Environ. Sci. 2010; 3::700714.
    [Google Scholar]
  66. Smith R.G. and Maitland G.C. Trans IChemE. 1998; 76A::539552.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/stsp.2012.ccs.9
Loading
/content/journals/10.5339/stsp.2012.ccs.9
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): Amine scrubbingCalcium loopingCarbon CaptureCCSCCS challenges and Sub-surface processing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error