1887
Volume 2017, Issue 3
  • EISSN: 2223-506X

Abstract

The steady increase in the number of patients with diseased aortic valves demands the development of effective aortic valve replacement procedures. Engineering and technology offer various manufactured alternatives, but none can exactly match the natural human valve. In addition to the experts of heart valve tissue engineering, many researchers focus on specific aspects of the manufacturing of artificial valves. The aim of this study was to benefit such manufacturing processes. From the contributor's perspective, it is vital to gain comprehensive knowledge before embarking on this project. The perfect/optimal shape of the valve is the fundamental aspect that needs to be considered by all participants. It is noteworthy that the geometry not only limits the functionality of the structure but also determines the choice of material and engineering methods. In this study, we attempt to determine if current knowledge is sufficient to reach consensus on the issue of the optimum shape of the valve. Here, we not only provide a brief overview of traditional literature but also include the opinions of experts. This innovative way of scientific communication is unprecedented in scientific literature, and we hope that both professionals and contributors will find this study useful.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2017.1
2017-11-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/connect/2017/3/connect.2017.1.html?itemId=/content/journals/10.5339/connect.2017.1&mimeType=html&fmt=ahah

References

  1. CardioPulse Articles. Eur Heart J. 2015 Feb 7; 36:6:325332.
    [Google Scholar]
  2. Hoerstrup SP, Weber B. Biological heart valves. Eur Heart J. 2015 Feb; 36:6:325326.
    [Google Scholar]
  3. DeWall RA, Qasim N, Carr L. Evolution of mechanical heart valves. Ann Thorac Surg. 2000 May; 69:5:16121621.
    [Google Scholar]
  4. Delmo Walter EM, de By TMMH, Meyer R, Hetzer R. The future of heart valve banking and of homografts: perspective from the Deutsches Herzzentrum Berlin. HSR Proc Intensive Care Cardiovasc Anesth. 2012; 4:2:97108.
    [Google Scholar]
  5. Kluin J, Talacua H, Smits AIPM, Emmert MY, Brugmans MCP, Fioretta ES, et al.  In situ heart valve tissue engineering using a bioresorbable elastomeric implant – From material design to 12 months follow-up in sheep. Biomaterials. 2017 May; 125::101117.
    [Google Scholar]
  6. Yacoub MH, Takkenberg JJM. Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med. 2005 Feb; 2:2:6061.
    [Google Scholar]
  7. Cribier A. Development of transcatheter aortic valve implantation (TAVI): A 20-year odyssey. Arch Cardiovasc Dis. 2012 Mar; 105:3:146152.
    [Google Scholar]
  8. Paniagua D, Condado JA, Besso J, Vélez M, Burger B, Bibbo S, et al.  First human case of retrograde transcatheter implantation of an aortic valve prosthesis. Tex Heart Inst J. 2005; 32:3:393398.
    [Google Scholar]
  9. Webb JG, Chandavimol M, Thompson CR, Ricci DR, Carere RG, Munt BI, et al.  Percutaneous aortic valve implantation retrograde from the femoral artery. Circulation. 2006 Feb 14; 113:6:842850.
    [Google Scholar]
  10. Vesely I. Heart valve tissue engineering. Circ Res. 2005 Oct 14; 97:8:743755.
    [Google Scholar]
  11. Loerakker S, Argento G, Oomens CWJ, Baaijens FPT. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. J Biomech. 2013 Jul 26; 46:11:17921800.
    [Google Scholar]
  12. Liberski AR, Kot R. On the way to the optimal design of an aortic heart valve -or- discovering the obvious? Qatar Found Annu Res Conf Proc. 2016 Mar 1; 2016:1:HBPP3190.
    [Google Scholar]
  13. Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR. Fluid–structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation. Comput Mech. 2014 Oct; 54:4:10551071.
    [Google Scholar]
  14. Griffith BE, Luo X, McQueen DM, Peskin CS. Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech. 2009 Mar; 1:1:137177.
    [Google Scholar]
  15. Weinberg EJ, Kaazempur Mofrad MR. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J Biomech. 2008 Dec 5; 41:16:34823487.
    [Google Scholar]
  16. Leipsic J, Gurvitch R, LaBounty TM, Min JK, Wood D, Johnson M, et al.  Multidetector computed tomography in transcatheter aortic valve implantation. JACC Cardiovasc Imaging. 2011 Apr; 4:4:416429.
    [Google Scholar]
  17. Driessen NJ, Boerboom RA, Huyghe JM, Bouten CV, Baaijens FP. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng. 2003 Aug; 125:4:549557.
    [Google Scholar]
  18. Liberski AR. 3D printing assisted prototyping of anatomically accurate aortic valve alginate scaffolds. Qatar Found Annu Res Conf Proc. 2016 Mar 1; 2016:1:HBPP1374.
    [Google Scholar]
  19. Goldmann H, Merckle C, Sievers H-H. Woven aortic sinus prosthesis having a bulb [Internet]. US20100094390 A1, 2010 [cited 2017 May 6]. Available from: http://www.google.tl/patents/US20100094390 .
  20. Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M. Alginate for cardiac regeneration: From seaweed to clinical trials. Glob Cardiol Sci Pract [Internet]. 2016 Jun 6 [cited 2017 May 7];2016(1). Available from: https://globalcardiologyscienceandpractice.com/index.php/gcsp/article/view/6 .
  21. Yacoub MH. In search of living valve substitutes. J Am Coll Cardiol. 2015 Aug 25; 66:8:889891.
    [Google Scholar]
  22. Hasan A, Ragaert K, Swieszkowski W, Selimović S, Paul A, Camci-Unal G, et al., Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech. 2014 Jun 27; 47:9:19491963.
    [Google Scholar]
  23. Mallone A, Weber B, Hoerstrup SP. Approaches and recent advances in heart valve tissue engineering. In: Hasan A, ed. Tissue Engineering for Artificial Organs [Internet]. Wiley-VCH Verlag GmbH & Co. KGaA 2017;:445463. [cited 2017 May 6]. Available from: http://onlinelibrary.wiley.com/doi/10.1002/9783527689934.ch14/summary .
    [Google Scholar]
  24. Hinton RB. Advances in the treatment of aortic valve disease: Is it time for companion diagnostics? Curr Opin Pediatr. 2014 Oct; 26:5:546552.
    [Google Scholar]
  25. Cox MAJ, Kortsmit J, Driessen N, Bouten CVC, Baaijens FPT. Tissue-engineered heart valves develop native-like collagen fiber architecture. Tissue Eng Part A. 2010 May; 16:5:15271537.
    [Google Scholar]
  26. Thubrikar MJ. The Aortic Valve. 1st Ed. Boca Raton, FL: CRC Press 1989:p.232.
    [Google Scholar]
  27. Hamid MS, Sabbah HN, Stein PD. Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. J Biomech. 1986 Jan 1; 19:9:759769.
    [Google Scholar]
  28. Fan R, Bayoumi AS, Chen P, Hobson CM, Wagner WR, Mayer JE, et al.  Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement. J Biomech. 2013 Feb 22; 46:4:662669.
    [Google Scholar]
  29. Mavrilas D, Apostolakis E, Koutsoukos P. Prosthetic Aortic Valves: A Surgical and Bioengineering Approach 2011 [cited 2017 May 7]. Available from: http://www.intechopen.com/books/aortic-valve-surgery/prosthetic-aortic-valves-a-surgical-and-bioengineering-approach .
  30. Liberski AR, Raynaud CM, Ayad N, Wojciechowska D, Sathappan A. Valve tissue engineering with living absorbable threads. Macromol Biosci. 2017; 17:5:1600196.
    [Google Scholar]
  31. Liberski A, Ayad N, Wojciechowska D, Zielinska D, Struszczyk MH, Latif N, et al. Knitting for heart valve tissue engineering, Glob Cardiol Sci Pract [Internet]. 2016 Dec 7 [cited 2017 May 7];2016(3). Available from: https://globalcardiologyscienceandpractice.com/index.php/gcsp/article/view/33 .
  32. Swanson M, Clark RE. Dimensions and geometric relationships of the human aortic valve as a function of pressure. Circ Res. 1974 Dec; 35:6:871882.
    [Google Scholar]
  33. Robicsek F. Leonardo da Vinci and the sinuses of Valsalva. Ann Thorac Surg. 1991 Aug; 52:2:328335.
    [Google Scholar]
  34. Khelil N, Sleilaty G, Palladino M, Fouda M, Escande R, Debauchez M, et al.  Surgical anatomy of the aortic annulus: landmarks for external annuloplasty in aortic valve repair. Ann Thorac Surg. 2015 Apr; 99:4:12201226.
    [Google Scholar]
  35. Marom G, Halevi R, Haj-Ali R, Rosenfeld M, Schäfers H-J, Raanani E. Numerical model of the aortic root and valve: Optimization of graft size and sinotubular junction to annulus ratio. J Thorac Cardiovasc Surg. 2013 Nov; 146:5:12271231.
    [Google Scholar]
  36. Schäfers H-J, Bierbach B, Aicher D. A new approach to the assessment of aortic cusp geometry. J Thorac Cardiovasc Surg. 2006 Aug; 132:2:436438.
    [Google Scholar]
  37. Marom G, Haj-Ali R, Rosenfeld M, Schäfers HJ, Raanani E. Aortic root numeric model: Annulus diameter prediction of effective height and coaptation in post-aortic valve repair. J Thorac Cardiovasc Surg. 2013 Feb 1; 145:2:406411.e1.
    [Google Scholar]
  38. van Geemen D, Soares ALF, Oomen PJA, Driessen-Mol A, Janssen-van den Broek MWJT, van den Bogaerdt AJ, et al.  Age-dependent changes in geometry, tissue composition and mechanical properties of fetal to adult cryopreserved human heart valves. PloS One. 2016; 11:2:e0149020.
    [Google Scholar]
  39. Tops LF, Wood DA, Delgado V, Schuijf JD, Mayo JR, Pasupati S, et al.  Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. JACC Cardiovasc Imaging. 2008 May; 1:3:321330.
    [Google Scholar]
  40. Ng ACT, Delgado V, van der Kley F, Shanks M, van de Veire NRL, Bertini M, et al.  Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circ Cardiovasc Imaging. 2010 Jan; 3:1:94102.
    [Google Scholar]
  41. Dawidowska K. Aortic valve geometry modeling – review. Adv Mater Sci. 2016; 16:4:2937.
    [Google Scholar]
  42. Chester AH, El-Hamamsy I, Butcher JT, Latif N, Bertazzo S, Yacoub MH. The living aortic valve: From molecules to function. Glob Cardiol Sci Pract. 2014 Jan 29; 2014:1:5277.
    [Google Scholar]
  43. Thapliyal HV. Personalized aortic valve prosthesis [Internet]. US20140330367 A1, 2014 [cited 2017 May 6]. Available from: http://www.google.ch/patents/US20140330367 .
  44. Treasure T. A ‘compare and contrast’ exercise: Wrapping versus personalised external aortic root support (PEARS). J Cardiothorac Surg. 2016 Jul 12; 11:1:104.
    [Google Scholar]
  45. Treasure T. Personalized external aortic root support. Tex Heart Inst J. 2013; 40:5:549552.
    [Google Scholar]
  46. Liberski AR, Sathappan A, Somasundaram SJJ, Jarocinski W. A knitted/non-woven composite polycaprolactone scaffold for tissue engineering of the aortic valve. Qatar Found Annu Res Conf Proc. 2016 Mar 1; 2016:1:HBPP1473.
    [Google Scholar]
  47. Liberski A, Wojciechowska D. Engineering of highly resemblent heart valve leaflet structures fabricated from PET fibres, using 3D knitting method. 2016 [cited 2017 May 6]. Available from: https://doi.org/10.13140/RG.2.2.35359.56488 .
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2017.1
Loading
/content/journals/10.5339/connect.2017.1
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Optimal heart valve geometrysmart scaffoldstissue engineering and valve prosthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error