1887
Volume 2024, Issue 1
  • ISSN: 0253-8253
  • EISSN: 2227-0426

Abstract

Sixty patients with COVID-19 infection were categorized into mild and severe groups, and their immune response was analyzed using flow cytometry and complete blood count. An observed increase in immune activation parameters, notably a higher percentage of CD4 lymphocytes co-expressing CD69 and CD25 molecules, and enhanced activity of the macrophage-monocyte cell line was noted in the mild group. Although Group 2 (severe COVID) had fewer CD4 cells, significant migration and proliferation were evident, with increased CD4CD69, CD8 HLA-DR+, and CD8CD69 lymphocytes. The CD4 to CD8 ratio in Group 1 suggested potential autoimmune reactions, while Group 2 indicated potential immunosuppression from severe infection and employing immunosuppressive drugs. Additionally, Group 2 exhibited an increased neutrophil count, hinting at possible bacterial co-infection. Group 1 showed differences in CD4RO and CD8RA lymphocyte populations, implying that cellular immunity plays a role in developing efficient postinfectious immunity. This intimation suggests that vaccination might mitigate the severity of the coronavirus infection and prevent complications, including long-term COVID-19.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2024.11
2024-02-29
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/qmj/2024/1/qmj.2024.11.html?itemId=/content/journals/10.5339/qmj.2024.11&mimeType=html&fmt=ahah

References

  1. Ochani R, Asad A, Yasmin F, Shaikh S, Khalid H, Batra S, et al.. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez Med. 2021 Mar 1; 29:(1):20-36.
    [Google Scholar]
  2. Covid-19 cases | WHO COVID-19 Dashboard [Internet] . World Health Organization; [cited 2023 Aug 17]. Available from: https://covid19.who.int/
    [Google Scholar]
  3. Taleghani N, Taghipour F. Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. Biosens Bioelectron. 2021 Feb 15; 174:112830. doi: 10.1016/j.bios.2020.112830.
    [Google Scholar]
  4. Li Q, Wang Y, Sun Q, Knopf J, Herrmann M, Lin L, et al.. Immune response in COVID-19: what is next? Cell Death Differ. 2022 Jun; 29:(6):1107-1122. doi: 10.1038/s41418-022-01015-x.
    [Google Scholar]
  5. Silva Andrade B, Siqueira S, de Assis Soares WR, de Souza Rangel F, Santos NO, Dos Santos Freitas A, et al.. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses. 2021 Apr 18; 13:(4):700. doi: 10.3390/v13040700.
    [Google Scholar]
  6. Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, et al.. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev. 2021 Jan; 65:101205. doi: 10.1016/j.arr.2020.101205.
    [Google Scholar]
  7. Anka AU, Tahir MI, Abubakar SD, Alsabbagh M, Zian Z, Hamedifar H, et al.. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management. Scand J Immunol. 2021 Apr; 93:(4):e12998. doi: 10.1111/sji.12998.
    [Google Scholar]
  8. Gracia-Ramos AE, Martin-Nares E, Hernández-Molina G. New Onset of Autoimmune Diseases Following COVID-19 Diagnosis. Cells. 2021 Dec 20; 10:(12):3592. doi: 10.3390/cells10123592.
    [Google Scholar]
  9. Tang KT, Hsu BC, Chen DY. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review. Front Immunol. 2021 Mar 12; 12:645013. doi: 10.3389/fimmu.2021.645013.
    [Google Scholar]
  10. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al.. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28; 395:(10229):1033-1034. doi: 10.1016/S0140-6736(20)30628-0.
    [Google Scholar]
  11. Parisi GF, Brindisi G, Indolfi C, Diaferio L, Marchese G, Ghiglioni DG, et al.. Upper airway involvement in pediatric COVID-19. Pediatr Allergy Immunol. 2020 Nov; 31 Suppl 26:(Suppl 26):85-88. doi: 10.1111/pai.13356.
    [Google Scholar]
  12. Zawilska JB, Lagodzinski A, Berezinska M. COVID-19: from the structure and replication cycle of SARS-CoV-2 to its disease symptoms and treatment. Journal of Physiology and Pharmacology. 2021; 72:(4). doi: 10.26402/jpp.2021.4.01.
    [Google Scholar]
  13. Guziejko K, Tałałaj J, Czupryna P, Malinowska A. Long COVID. Przeglad Epidemiologiczny. 2022; 76:(3):287-295.
    [Google Scholar]
  14. Chudzik M, Babicki M, Kapusta J, Kałuzińska-Kołat Ż, Kołat D, Jankowski P, et al.. Long-COVID Clinical Features and Risk Factors: A Retrospective Analysis of Patients from the STOP-COVID Registry of the PoLoCOV Study. Viruses. 2022 Aug 11; 14:(8):1755. doi: 10.3390/v14081755.
    [Google Scholar]
  15. Ciechanowicz P, Lewandowski K, Szymańska E, Kaniewska M, Rydzewska GM, Walecka I. Skin and gastrointestinal symptoms in COVID-19. Prz Gastroenterol. 2020; 15:(4):301-308. doi: 10.5114/pg.2020.101558.
    [Google Scholar]
  16. Parisi GF, Indolfi C, Decimo F, Leonardi S, Giudice M. COVID-19 Pneumonia in Children: From Etiology to Management. Front Pediatr. 2020 Dec 14; 8:616622. doi: 10.3389/fped.2020.616622.
    [Google Scholar]
  17. Vadakekolathu J, Minden MD, Hood T, Church SE, Reeder S, Altmann H, et al.. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci Transl Med. 2020 Jun 3; 12:(546):eaaz0463. doi: 10.1126/scitranslmed.aaz0463.
    [Google Scholar]
  18. Petrone L, Sette A, Vries RD, Goletti D. The Importance of Measuring SARS-CoV-2-Specific T-Cell Responses in an Ongoing Pandemic. Pathogens. 2023 Jun 22; 12:(7):862. doi: 10.3390/pathogens12070862.
    [Google Scholar]
  19. Ilderbayev O, Zharmakhanova G, Rakhyzhanova S, Musaynova A, Ilderbayeva G, Nursafina A, et al.. Immune System Response after Immobilization Stress in the Background of Ionizing Radiation. Trends in Sciences. 2022; 19:(13):4637. doi: 10.48048/tis.2022.4637.
    [Google Scholar]
  20. Oliynyk OV, Rorat M, Solyarik SO, Lukianchuk VA, Dubrov SO, Guryanov VH, et al.. Impact of Alteplase on Mortality in Critically Ill Patients with COVID-19 and Pulmonary Embolism. Viruses. 2023 Jul 7; 15:(7):1513. doi: 10.3390/v15071513.
    [Google Scholar]
  21. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al.. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020 May; 17:(5):541-543. doi: 10.1038/s41423-020-0401-3.
    [Google Scholar]
  22. Song JW, Zhang C, Fan X, Meng FP, Xu Z, Xia P, et al.. Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nat Commun. 2020 Jul 8; 11:(1):3410. doi: 10.1038/s41467-020-17240-2.
    [Google Scholar]
  23. Hallek M, Adorjan K, Behrends U, Ertl G, Suttorp N, Lehmann C. Post-COVID Syndrome. Dtsch Arztebl Int. 2023 Jan 27; 120:(4):48-55. doi: 10.3238/arztebl.m2022.0409.
    [Google Scholar]
  24. Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis (Lond). 2021 Oct; 53:(10):737-754. doi: 10.1080/23744235.2021.1924397.
    [Google Scholar]
  25. Su Y, Yuan D, Chen DG, Ng RH, Wang K, Choi J, Li S, et al.. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022; 185:(5):881-89 5.e20. doi: 10.1016/j.cell.2022.01.014.
    [Google Scholar]
  26. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021 Feb 18; 184:(4):861-880. doi: 10.1016/j.cell.2021.01.007.
    [Google Scholar]
  27. Glynne P, Tahmasebi N, Gant V, Gupta R. Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines. J Investig Med. 2022 Jan; 70:(1):61-67. doi: 10.1136/jim-2021-002051.
    [Google Scholar]
  28. Kamilova U, Ermekbaeva A, Nuritdinov N, Khamraev A, Zakirova G. Occurrence of comorbid diseases in patients after COVID-19. J Med Life. 2023 Mar; 16:(3):447-450. doi: 10.25122/jml-2022-0168.
    [Google Scholar]
  29. Wiech M, Chroscicki P, Swatler J, Stepnik D, Biasi S, Hampel M, et al.. Remodeling of T Cell Dynamics During Long COVID Is Dependent on Severity of SARS-CoV-2 Infection. Front Immunol. 2022 Jun 10; 13:886431. doi: 10.3389/fimmu.2022.886431.
    [Google Scholar]
  30. Sekine T, Potti A, Ballesteros O, lin K, Gorin JB, Olsson A, Lacey S, et al.. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. 2020; 183:(1):158-168.e14. doi: 10.1016/j.cell.2020.08.017.
    [Google Scholar]
  31. Hermens JM, Kesmir C. Role of T cells in severe COVID-19 disease, protection, and long term immunity. Immunogenetics. 2023 Jun; 75:(3):295-307. doi: 10.1007/s00251-023-01294-9.
    [Google Scholar]
  32. Peluso MJ, Takahashi S, Hakim J, Kelly JD, Torres L, Iyer NS, et al.. SARS-CoV-2 antibody magnitude and detectability are driven by disease severity, timing, and assay. Sci Adv. 2021 Jul 30; 7:(31):eabh3409. doi: 10.1126/sciadv.abh3409.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/qmj.2024.11
Loading
/content/journals/10.5339/qmj.2024.11
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): cytometryimmunologypost-COVID syndromeT-cells and vaccination
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error